【题目】有一边长为10m的等边△ABC游乐场,某人从边AB中点P出发,先由点P沿平行于BC的方向运动到AC边上的点P1,再由P1沿平行于AB方向运动到BC边上的点P2,又由点P2沿平行于AC方向运动到AB边上的点P3,则此人至少要运动_____m,才能回到点P.如果此人从AB边上任意一点出发,按照上面的规律运动,则此人至少走_____m,就能回到起点.
【答案】15 30
【解析】
若某人从边AB中点P出发,由平行四边形的判定可证四边形BPP1P2是平行四边形,四边形PP1CP2是平行四边形,由平行四边形的性质可得PP1=BP2=P2C=5m,即可求解;
若某人从边AB边上任意一点出发,由平行四边形的判定可证四边形BPP1P2是平行四边形,四边形PP1CP5是平行四边形,四边形AP3P2P1是平行四边形,四边形APP5P4是平行四边形,四边形P3P4CP2是平行四边形,由平行四边形的性质可求解.
解:若某人从边AB中点P出发,
∵P是AB中点,AB=10m,
∴AP=BP=5m,
∵PP1∥BC,P1P2∥AB,PP2∥AC,
∴四边形BPP1P2是平行四边形,四边形PP1CP2是平行四边形,
∴PP1=BP2=P2C,
∴PP1=BP2=P2C=5m,
同理可求P2P1=5m,P2P=5m,
∴PP1+P2P1+P2P=15m,
∴此人至少要运动15m,才能回到点P;
若某人从边AB边上任意一点出发,
同理可证:四边形BPP1P2是平行四边形,四边形PP1CP5是平行四边形,四边形AP3P2P1是平行四边形,四边形APP5P4是平行四边形,四边形P3P4CP2是平行四边形,
∴PP1=BP2,P1P2=BP,PP5=P1C,P4P5=AP,P2P3=AP1,P3P4=P2C,
∵PP1+P1P2+P2P3+P3P4+P4P5+P5P=BP2+BP+AP1+P2C+AP+P1C=AB+AC+BC=30m,
故答案为:15,30.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C在⊙O上,连接AC,BC,OE⊥AC于点E,ED∥AB交BC于点F,且∠BCD=∠A
(1)求证:CD是⊙O的切线;
(2)求证:;
(3)若,BC=6,求CD的长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的弦,过AB的中点E作EC⊥OA于C,过点B作⊙O的切线BD交CE的延长线于点D.
(1)求证:DB=DE;
(2)连接AD,若AB=24,DB=10,求四边形OADB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:Rt△ABC,∠C=90°.
(1)点E在BC边上,且△ACE的周长为AC+BC,以线段AE上一点O为圆心的⊙O恰与AB、BC边都相切.请用无刻度的直尺和圆规确定点E、O的位置;
(2)若BC=8,AC=4,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠BAC=30°,将△ABC绕点A按逆时针方向旋转α°.得到△ADE,连接BD,CE交于点F.
(1)求证:△ABD≌△ACE;
(2)用α表示∠ACE的度数;
(3)若使四边形ABFE是菱形,求α的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,函数的图象经过点,直线与轴交于点.
(1)求的值及点的坐标;
(2)直线与函数的图象交于点,记图象在点,之间的部分与线段,,围成的区域(不含边界)为.
①当时,直接写出区域内的整点个数;
②若区域内恰有2个整点,结合函数图象,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果都是非零整数,且,那么就称是“4倍数”.
(1)30到35之间的“4倍数”是_________,小明说:是“4倍数”,嘉淇说:也是“4倍数”,他们谁说的对?____________.
(2)设是不为零的整数.
①是___________的倍数;
②任意两个连续的“4倍数”的积可表示为____________,它_____________(填“是”或“不是”)32的倍数.
(3)设三个连续偶数的中间一个数是(是整数),写出它们的平方和,并说明它们的平方和是“4倍数”.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=cm,且tan∠EFC=,那么该矩形的周长为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com