精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点PBC中点,两边PE、PF分别交AB、AC于点E、F,给出下列四个结论:

①AE=CF;

②△EPF是等腰直角三角形;

③EF=AB;

,当∠EPF△ABC内绕顶点P旋转时(E不与A、B重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).

【答案】①②④

【解析】

试题∵∠APE∠CPF都是∠APF的余角,

∴∠APE=∠CPF

∵AB=AC∠BAC=90°PBC中点,

∴AP=CP

∴∠PAE=∠PCF

△APE△CPF中,

∴△APE≌△CPFASA),

同理可证△APF≌△BPE

∴AE=CF△EPF是等腰直角三角形,S四边形AEPF=SABC①②④正确;

AP=BC,当EF不是△ABC的中位线时,则EF不等于BC的一半,EF=AP

不成立.

故始终正确的是①②④

故选D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知:AD平分∠CAE,AD∥BC.

(1)求证:△ABC是等腰三角形.

(2)当∠CAE等于多少度时△ABC是等边三角形?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线y=kx+b与抛物线y= x2交于A(x1 , y1)、B(x2 , y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】n边形的对角线把n边形分割成(n-2)个三角形,共有多少种不同的分割方案(n≥4)?

(探究)为了解决上面的数学问题,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进转化,最后猜想得出结论.不妨假设n边形的分割方案有Pn种.

探究一用四边形的对角线把四边形分割成2个三角形,共有多少种不同的分割方案?

如图,图,显然,只有2种不同的分割方案.所以,P4=2.

探究二:用五边形的对角线把五边形分割成3个三角形,共有多少种不同的分割方案?

不妨把分割方案分成三类:

1类:如图③,用A,EB连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.

2类:如图④,用A,EC连接,把五边形分割成3个三角形,有1种不同的分割方案,可视为种分割方案.

3图⑤,用A,ED连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案.

所以,P5 =++=()

探究三:用六边形的对角线把六边形分割成4个三角形,共有多少种不同的分割方案?

不妨把分割方案分成四类:

1类:如图⑥,用A,FB连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案.所以,此类共有P5种不同的分割方案.

2类:如图⑦,用A,FC连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案.所以,此类共有P4种分割方案

3类:如图⑧,用A,FD连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案.所以,此类共有P4种分割方案.

4类:如图⑨,用A,FE连接,先把六边形分割转化成1个三角形和1个五边形.再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案.所以,此类共有P5种分割方案.

所以,P6 =()

探究四:用七边形的对角线把七边形分割成5个三角形,则P7P6的关系为:

P7 = ,共有_____种不同的分割方案.……

(结论)用n边形的对角线把n边形分割成(n-2)个三角形,共有多少种不同的分割方案(n≥4)?(直接写出PnPn -1的关系式,不写解答过程).

(应用)用八边形的对角线把八边形分割成6个三角形,共有多少种不同的分割方案? (应用上述结论,写出解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为(  )

A.(1,﹣1)
B.(﹣1,﹣1)
C.( ,0)
D.(0,﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,B=C=90 ,M是BC的中点,DM平分ADC.

(1)若连接AM,则AM是否平分BAD?请你证明你的结论;

(2)线段DM与AM有怎样的位置关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC中,AC=6cm,BC=8cm,AB=10cm,CDAB边上的高.动点P从点A出发,沿着△ABC的三条边逆时针走一圈回到A点,速度为2cm/s,设运动时间为t s.

(1)求CD的长;

(2)t为何值时,△ACP是等腰三角形?

(3)MBC上一动点,NAB上一动点,是否存在M,N使得AM+MN 的值最小?如果有,请直接写出最小值,如果没有,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=AC=12厘米, BC=8厘米,点DAB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动;当点Q的运动速度为下列哪个值时,能够在某一时刻使BPDCQP全等(

A. 23厘米/ B. 4厘米/ C. 3厘米/ D. 46厘米/

查看答案和解析>>

同步练习册答案