【题目】如图,已知,将一个直角三角形纸片()的一个顶点放在点处,现将三角形纸片绕点任意转动,平分斜边与的夹角,平分.
(1)将三角形纸片绕点转动(三角形纸片始终保持在的内部),若,则_______;
(2)将三角形纸片绕点转动(三角形纸片始终保持在的内部),若射线恰好平方,若,求的度数;
(3)将三角形纸片绕点从与重合位置逆时针转到与重合的位置,猜想在转动过程中和的数量关系?并说明理由.
【答案】(1);(2);(3),证明见解析
【解析】
(1)利用角平分线定义得出,,再利用∠AOB的和差关系进行列方程即可求解;
(2)利用,表达出∠AOC、∠BOD,利用∠AOB的和差关系进行列方程即可求解;
(3)画出图形后利用角的和差关系进行计算求解即可.
解:(1)∵平分斜边与的夹角,平分.
∴OM平分∠AOC, ON平分∠BOD
∴设
∴,
∵
∴
∴
故答案为:
(2)∵
∴设
∵射线恰好平方
∴
∴
∵平分斜边与的夹角,平分.
∴OM平分∠AOC, ON平分∠BOD
∴
∴
∵
∴
∴
(3) ,证明如下:
当OC与OA重合时,设∠COD=x,则
∵ON平分∠BOD
∴
∴
∴
当OC在OA的左侧时
设∠AOD=a,∠AOC=b,则∠BOD=∠AOB-∠AOD=150°-a,∠COD=∠AOD+∠AOC=a+b
∵ON平分∠BOD
∴
∵OM平分∠AOC
∴
∴∠MON=∠MOA+∠AOD+∠DON
当OD与OA重合时
∵ON平分∠AOB
∴
∵OM平分∠AOC
∴
∴
综上所述
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD⊥BC于点D,BD=3cm,DC=8cm,AD=4cm,动点P从点B出发,沿折线BA﹣AC向终点C做匀速运动,点P在线段BA上的运动速度是5cm/s;在线段AC上的运动速度是cm/s,当点P不与点B、C重合时,过点P作PQ⊥BC于点Q,将△PBQ绕PQ的中点旋转180°得到△QB′P,设四边形PBQB′与△ABD重叠部分图形的面积为y(cm2),点P的运动时间为x(s).
(1)用含x的代数式表示线段AP的长.
(2)当点P在线段BA上运动时,求y与x之间的函数关系式.
(3)当经过点B′和△ADC一个顶点的直线平分△ADC的面积时,直接写出x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是等腰△ABC底边BC上的高,点O是AC中点,延长DO到E
使AE∥BC,连接AE。
(1)求证:四边形ADCE是矩形;
(2)①若AB=17,BC=16,则四边形ADCE的面积= ;
②若AB=10,则BC= 时,四边形ADCE是正方形。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,用三个正方形①、2个正方形②、1个正方形③和缺了一个角的长方形④,恰好拼成一个大长方形.根据图示数据,解答下列问题:
(1)用含x的代数式表示:a=__________cm,b=__________cm;
(2)用含x的代数式表示大长方形的周长,并求x=5时大长方形的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:若,则称与是关于的关联数.例如:若,则称与是关于2的关联数;
(1)若3与是关于2的关联数,则_______.
(2)若 与是关于2的关联数,求的值.
(3)若与是关于的关联数, ,的值与无关,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点C.抛物线经过A,C两点,且与x轴交于另一点B(点B在点A右侧).
(1)求抛物线的解析式及点B坐标;
(2)若点M是线段BC上的一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;
(3)试探究当ME取最大值时,在抛物线上、x轴下方是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正比例函数y=ax与反比例函数y=的图象交于点A(3,2)
(1)求上述两函数的表达式;
(2)M(m,n)是反比例函数图象上的一个动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A点作直线AC∥y轴交x轴于点C,交直线MB于点D.若s四边形OADM=6,求点M的坐标,并判断线段BM与DM的大小关系,说明理由;
(3)探索:x轴上是否存在点P.使△OAP是等腰三角形?若存在,求出点P的坐标; 若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某新型节能环保汽车油箱中原有汽油100升,汽车每行驶50千米耗油8升,试写出汽车行驶的路程x(千米)与油箱中剩余油量y(升)之间的函数关系式,并画出这个函数的图象,函数的图象是什么形状?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某品牌饮水机厂生产一种饮水机和饮水机桶,饮水机每台定价350元,饮水机桶每只定价50元,厂方开展促销活动期间,可以同时向客户提供两种优惠方案:
方案一:买一台饮水机送一只饮水机桶;
方案二:饮水机和饮水机桶都按定价的90%付款.
现某客户到该饮水机厂购买饮水机30台,饮水机桶只(超过30).
(1)若该客户按方案一购买,求客户需付款(用含的式子表示);若该客户按方案二购买,求客户需付款(用含的式子表示);
(2)若时,通过计算说明此时按哪种方案购买较为合算?
(3)当时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算出所需的钱数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com