【题目】在平面直角坐标系xOy中,点P与点Q不重合,以点P为圆心作经过Q的圆,则称该圆为点P、Q的“相关圆”
(1)已知点P的坐标为(2,0) ①若点Q的坐标为(0,1),求点P、Q的“相关圆”的面积;
②若点Q的坐标为(3,n),且点P、Q的“相关圆”的半径为 ,求n的值;
(2)已知△ABC为等边三角形,点A和点B的坐标分别为(﹣ ,0)、( ,0),点C在y轴正半轴上,若点P、Q的“相关圆”恰好是△ABC的内切圆且点Q在直线y=2x上,求点Q的坐标.
(3)已知△ABC三个顶点的坐标为:A(﹣3,0)、B( ,0),C(0,4),点P的坐标为(0, ),点Q的坐标为(m, ),若点P、Q的“相关圆”与△ABC的三边中至少一边存在公共点,直接写出m的取值范围.
【答案】
(1)解:①∵PQ= = = ,
∴S=πr2=5π.
②过点Q作QH⊥x轴于H.
∵HQ= =2,
∴Q点坐标为(3,2)或(3,﹣2).
∴n=2或﹣2
(2)解:如图,
在Rt△OAC中,∠ACO=30°,
∴OC= OA=3,
∴C点坐标为(0,3),
∴△ABC的内切圆的圆心的坐标为(0,1),半径为1,
∴P(0,1),
设Q(x,2x),则有x2+(2x﹣1)2=1,
解得x= ,
∴Q( , )
(3)解:如图3中,
①当相关圆与AC、AB相切时半径有最小值 .
②当相关圆经过点B时,半径有最大值 ,
∴﹣ ≤m≤﹣ , ≤m≤
【解析】(1)①根据PQ= = = ,求出⊙P的半径即可解决问题;②过点Q作QH⊥x轴于H.利用勾股定理求出QH的值,即可解决问题;(2)在Rt△OAC中,∠ACO=30°,可得OC= OA=3,推出C点坐标为(0,3),推出△ABC的内切圆的圆心的坐标为(0,1),半径为1,推出P(0,1),设Q(x,2x),则有x2+(2x﹣1)2=1,求出x即可;(3)①当相关圆与AC、AB相切时,可得半径有最小值 .②当相关圆经过点B时,可得半径最大值 ,由此即可解决问题;
科目:初中数学 来源: 题型:
【题目】如图,已知直线AC的表达式为y=x+8,点P从点A开始沿AO向点O以1个单位/s的速度移动,点Q从点O开始沿OC向点C以2个单位/s的速度移动.如果P,Q两点分别从点A,O同时出发,经过几秒能使△PQO的面积为8个平方单位?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店分两次购进、两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:
购进数量(件) | 购进所需费用(元) | ||
|
| ||
第一次 | 30 | 40 | 3800 |
第二次 | 40 | 30 | 3200 |
(1)求、两种商品每件的进价分别是多少元?
(2)商场决定种商品以每件30元出售,种商品以每件100元出售.为满足市场需求,需购进、两种商品共1000件,且种商品的数量不少于种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3 m.
(1)求两面墙之间距离CE的大小;
(2)求点B到地面的垂直距离BC的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F,AB=4,AD=3,OF=1.3.求四边形BCFE的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按元/公里计算,耗时费按元/分钟计算(总费用不足元按元计价).小敏、小刚两人用该打车方式出行,按上述计价规则,其行驶里程数、耗时以及打车总费用如下表:
里程数(公里) | 耗时(分钟) | 车费(元) | |
小敏 | |||
小刚 |
求的值;
若小华也用该打车方式打车,平均车速为公里/时,行驶了
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近年来,随着我国的科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国创造”,高铁事业是“中国创造”的典范,一般的高铁包括G字头的高速动车组以及D字头的动车组.由大连到北京的G377的平均速度是D31的平均速度的1.2倍,行驶相同的路程1500千米,G377少用1个小时.
(1)求D31的平均速度.
(2)若以“速度与票价的比值”定义这两种列车的性价比,人们出行都喜欢选择性价比高的方式.现阶段D31票价为266元/张,G377票价为400元/张,如果你有机会给有关部门提一个合理化建议,使G377的性价比达到D31的性价比,你如何建议,为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com