精英家教网 > 初中数学 > 题目详情

【题目】如图:已知AEBFAE=BFACDB在同一直线上,要使△ADE≌△BCF,可添加的一个条件可以是____________________(写一个即可).

【答案】AD=BCBD=AC,∠E=F,∠ADE=BCFDECF.

【解析】

AEBF得到∠A=B,再加AE=BF,满足一边一角两个条件,可再添加边为AD=BC,或者是另两组角,即可判定全等.

∵AE∥BF,

∴∠A=∠B,

又∵AE=BF,

∴添加AD=BCBD=AC,利用SAS证明△ADE≌△BCF

添加∠E=F,利用AAS证明ADE≌△BCF

添加∠ADE=BCF(或DECF),利用AAS证明ADE≌△BCF

故答案为:AD=BCBD=AC,∠E=F,∠ADE=BCFDECF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与ACBC的延长线相交,交点分别为点EFDFAC交于点MDEBC交于点N

1)如图1,若CE=CF,求证:DE=DF

2)如图2,在∠EDF绕点D旋转的过程中:

探究三条线段ABCECF之间的数量关系,并说明理由;

CE=4CF=2,求DN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,点Dmm+8)在第二象限,点B0n)在y轴正半轴上,作DAx轴,垂足为A,已知OAOB的值大2,四边形AOBD的面积为12

1)求mn的值.

2)如图2CAO的中点,DCAB相交于点EAFBD,垂足为F,求证:AFDE

3)如图3,点G在射线AD上,且GAGBHGB延长线上一点,作∠HANy轴于点N,且∠HAN=∠HBO,求NBHB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2017广东省深圳市)如图,抛物线经过点A(﹣1,0),B(4,0),交y轴于点C

(1)求抛物线的解析式(用一般式表示);

(2)点Dy轴右侧抛物线上一点,是否存在点D使?若存在请直接给出点D坐标;若不存在,请说明理由;

(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A3m),B﹣2﹣3)是直线AB和某反比例函数的图象的两个交点.

1)求直线AB和反比例函数的解析式;

2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;

3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,PO⊥AB,PE⊙O的切线,交AB的延长线于点C,切点为E,AEPO于点F.

(1)求证:PEF是等腰三角形;

(2)在图中,作EH⊥AB,垂足为H,作弦BD∥PC,交EH于点G.若EG=5,sinC=,求直径AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC的三边分别为abc,则下列条件中不能判定ABC是直角三角形的是(  )

A. b2=a2c2B. abc=12

C. C=A﹣∠BD. A:∠B:∠C=345

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图所示的三角形解释二项式乘方(a+bn的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b64的展开式中第63项的系数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线经过点A0),B0),且与y轴相交于点C

1求这条抛物线的表达式

2)求∠ACB的度数;

3设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当DCEAOC相似时,求点D的坐标.

查看答案和解析>>

同步练习册答案