【题目】如图:已知AE∥BF,AE=BF,A、C、D、B在同一直线上,要使△ADE≌△BCF,可添加的一个条件可以是____________________.(写一个即可).
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.
(1)如图1,若CE=CF,求证:DE=DF;
(2)如图2,在∠EDF绕点D旋转的过程中:
①探究三条线段AB,CE,CF之间的数量关系,并说明理由;
②若CE=4,CF=2,求DN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,点D(m,m+8)在第二象限,点B(0,n)在y轴正半轴上,作DA⊥x轴,垂足为A,已知OA比OB的值大2,四边形AOBD的面积为12.
(1)求m和n的值.
(2)如图2,C为AO的中点,DC与AB相交于点E,AF⊥BD,垂足为F,求证:AF=DE.
(3)如图3,点G在射线AD上,且GA=GB,H为GB延长线上一点,作∠HAN交y轴于点N,且∠HAN=∠HBO,求NB﹣HB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017广东省深圳市)如图,抛物线经过点A(﹣1,0),B(4,0),交y轴于点C;
(1)求抛物线的解析式(用一般式表示);
(2)点D为y轴右侧抛物线上一点,是否存在点D使?若存在请直接给出点D坐标;若不存在,请说明理由;
(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.
(1)求直线AB和反比例函数的解析式;
(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;
(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,PO⊥AB,PE是⊙O的切线,交AB的延长线于点C,切点为E,AE交PO于点F.
(1)求证:PEF是等腰三角形;
(2)在图中,作EH⊥AB,垂足为H,作弦BD∥PC,交EH于点G.若EG=5,sinC=,求直径AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC的三边分别为a、b、c,则下列条件中不能判定△ABC是直角三角形的是( )
A. b2=a2﹣c2B. a:b:c=1::2
C. ∠C=∠A﹣∠BD. ∠A:∠B:∠C=3:4:5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图所示的三角形解释二项式乘方(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)64的展开式中第63项的系数为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线经过点A(,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com