精英家教网 > 初中数学 > 题目详情

【题目】如图ABC的角平分线BD、CE相交于点P.

(1)如果A=70°,求BPC的度数;

(2)如图,过P点作直线MNBC,分别交AB和AC于点M和N,试求MPB+NPC的度数(用含A的代数式表示);

在(2)的条件下,将直线MN绕点P旋转.

)当直线MN与AB、AC的交点仍分别在线段AB和AC上时,如图,试探索MPB、NPC、A三者之间的数量关系,并说明你的理由;

)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图,试问()中MPB、NPC、A三者之间的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请给出MPB、NPC、A三者之间的数量关系,并说明你的理由.

【答案】(1)125°;(2)MPB+NPC=90°-A;(3)MPB+NPC= 90°-A,MPB-NPC=90°-A.

【解析】

试题(1)由三角形内角和定理可知ABC+ACB=180°-A,由角平分线的性质可知及三角形内角和定理可求出BPC的度数;

(2)利用平行线的性质求解或先说明BPC=90°+A;

(3)()先说明BPC=90°+A,则MPB+NPC=180°-BPC=180°-(90°+A)= 90°-A;()不成立,MPB-NPC=90°-A.理由:由图可知MPB+BPC-NPC=180°,由()知:BPC=90°+A,因此MPB-NPC=180°-BPC=180°-(90°+A)= 90°-A.

试题解析::(1)ABC中,A+B+ACB=180°

∵∠A=70°

∴∠ABC+ACB=110°

∵∠1=ABC,

2=ACB,

∴∠1+2=ABC+ACB)

=×110°=55°

∴∠BPC=180°-(1+2)=180°-55°=125°

(2)由(1)可证BPC=90°+A,

MPB+NPC=180°-BPC=180°-(90°+A)=90°-A;

(3)(MPB+NPC= 90°-A.

理由:先说明BPC=90°+A,则MPB+NPC=180°-BPC=180°-(90°+A)= 90°-A;

)不成立(1分),MPB-NPC=90°-A(1分).

理由:由图可知MPB+BPC-NPC=180°,由()知:BPC=90°+A,

MPB-NPC=180°-BPC=180°-(90°+A)= 90°-A.

考点: (1)平行线的性质;2.角平分线的性质;3.三角形内角和.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一只跳蚤在第一象限及x轴、y轴上跳动,第一秒它从原点跳动到点(01),第二秒它从点(0,1)跳到点(1,1),然后接着按图中箭头所示方向跳动[(00)→(01)→(11)→(10)→…],每秒跳动一个单位长度,那么30秒后跳蚤所在位置的坐标是___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD中,AB6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2,以此类推,第n次平移将长方形An1Bn1Cn1Dn1沿An1Bn1的方向向右平移5个单位,得到长方形AnBnCnDnn2),则ABn长为

A. 5n6B. 5n1C. 5n4D. 5n3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三角形的内切圆的切点将该圆周分为5:9:10三条弧,则此三角形的最小的内角为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】超越公司将某品牌农副产品运往新时代市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,vt的一组对应值如下表:

v(千米/小时)

75

80

85

90

95

t(小时)

4.00

3.75

3.53

3.33

3.16

1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;

2)汽车上午730从超越公司出发,能否在上午1000之前到达新时代市场?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料,回答问题
一艘轮船以20海里/时的速度由西向东航行,途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20 海里的圆形区域(包括边界)都属台风区,当轮船到A处时,测得台风中心移到位于点A正南方向B处,且AB=100海里.

(1)若这艘轮船自A处按原速度和方向继续航行,在途中会不会遇到台风?若会,试求轮船最初遇到台风的时间;若不会,说明理由;
(2)现轮船自A处立即提高船速,向位于北偏东60°方向,相距60海里的D港驶去,为使台风到来之前,到达D港,问船速至少应提高多少(提高的船速取整数, ≈3.6)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).

(1)四边形EFGH的形状是_____,证明你的结论;

(2)当四边形ABCD的对角线满足_____条件时,四边形EFGH是矩形(不证明)

(3)你学过的哪种特殊四边形的中点四边形是矩形?_____(不证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在函数y= (x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,将△ABC沿着某一方向平移一定的距离得到△MNL,则下列结论中正确的有(  )

AMBN;AM=BN;BC=ML;④∠ACB=MNL。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案