分析 (1)方程组利用代入消元法求出解即可;
(2)方程组利用加减消元法求出解即可;
(3)方程组整理后,利用加减消元法求出解即可;
(4)方程组整理后,利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{x-4y=6①}\\{2x-3y=2②}\end{array}\right.$,
由①得:x=4y+6③,
把③代入②得:8y+12-3y=2,
解得:y=-2,
把y=-2代入③得:x=-2,
则方程组的解为$\left\{\begin{array}{l}{x=-2}\\{y=-2}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{3x+2y=3①}\\{5x-6y=-23②}\end{array}\right.$,
①×3+②得:14x=-14,即x=-1,
把x=-1代入①得:y=3,
则方程组的解为$\left\{\begin{array}{l}{x=-1}\\{y=3}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{2x-7y=8①}\\{3x-8y=10②}\end{array}\right.$,
②×7-①×8得:5x=6,即x=1.2,
把x=1.2代入①得:y=-0.8,
则方程组的解为$\left\{\begin{array}{l}{x=1.2}\\{y=-0.8}\end{array}\right.$;
(4)方程组整理得:$\left\{\begin{array}{l}{5x+y=36①}\\{-x+9y=2②}\end{array}\right.$,
①+②×5得:46y=46,即y=1,
把y=1代入①得:x=7,
则方程组的解为$\left\{\begin{array}{l}{x=7}\\{y=1}\end{array}\right.$.
点评 此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 5×105个 | B. | 5×106个 | C. | 5×107个 | D. | 5×108个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com