【题目】如图,ABCD中,∠BAC=90°,AB=AC,点E是边AD上一点,且BE=BC,BE交AC于点F,过点C作BE的垂线,垂足为点O,与AD交于点G.
(1)若AB=,求AE的长;
(2)求证;BF=CO+EO.
【答案】(1)AE=﹣1;(2)证明见解析.
【解析】
(1)过E作EH⊥BA交BA的延长线于于H,根据等腰直角三角形的性质得到∠ABC=45°,BC=BE=2,根据平行线的性质得到∠HAE=∠ABC=45°,设AH=HE=a,得到AE=a,根据勾股定理即可得到结论;
(2)由(1)知,∠OBC=30°,得到BF=OB﹣OF=OC﹣OE,过G作GH⊥BC于H,求出OE=(2﹣)OC,把OE=(2﹣)OC代入OC﹣OE求得BF=2(﹣1)OC,代入求得CO+EO=2(﹣1)OC,于是得到结论.
解:(1)过E作EH⊥BA交BA的延长线于于H,
∵∠BAC=90°,AB=AC,
∴∠ABC=45°,BC=BE=2,
∵AD∥BC,
∴∠HAE=∠ABC=45°,
∴设AH=HE=a,
∴AE=a,
在Rt△EBH中,∵BH2+EH2=BE2,
∴(a+)2+a2=22,
∴a=,
∴AE=﹣1;
(2)过A作AM⊥BC于M,GH⊥BC于H,EN⊥BC于N,
则AM=GH=EN=BC=1,
∴sin∠EBC=,
∴∠EBC=30°,
∴OC=BC=1,
∴∠OBC=30°,
∵BE=BC,
∴∠BEC=75°,
∵∠CFE=45°+30°=75°,
∴CF=CE,
∴OF=OE,
∵OC⊥BO,
∴BO=OC,
∴BF=OB﹣OF=OC﹣OE,
过G作GH⊥BC于H,
∴GH=EN=OC=CG=(OC+OG)=(OC+OE),
∴OC=(OC+OE),
∴OE=(2﹣)OC,
∴BF=OB﹣OF=OC﹣OE=2(﹣1)OC,
∵CO+EO=OC+(2﹣)OC=2(﹣1)OC,
∴BF=CO+EO.
科目:初中数学 来源: 题型:
【题目】如图,在矩形中, ,为中点,连接. 动点从点出发沿边向点运动,动点从点出发沿边向点运动,两个动点同时出发,速度都是每秒1个单位长度,连接,设运动时间为(秒). 则_____时,为直角三角形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴交于点,与双曲线交于点,其中点在第一象限,点在第三象限。
(1)求双曲线的解析式;
(2)求点的坐标;
(3)若,在轴上是否存在点,使是等腰三角形?若存在,请写出点的坐标;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】蜂蜜具有消食、润肺、安神、美颜之功效,是天然的健康保健佳品.秋天即将来临时,雪宝山土特产公司抓住商机购进甲、乙、丙三种蜂蜜,已知销售每瓶甲蜂蜜的利润率为10%,每瓶乙蜂蜜的利润率为20%,每瓶丙蜂蜜的利润率为30%.当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,商人得到的总利润率为20%.那么当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,该公司得到的总利润率为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形中的三个顶点在⊙上,是优弧上的一个动点(不与点、重合).
(1)当圆心在内部,时,________.
(2)当圆心在内部,四边形为平行四边形时,求的度数;
(3)当圆心在外部,四边形为平行四边形时,请直接写出与的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某网店销售一种儿童玩具,进价为每件30元,物价部门规定每件儿童玩具的销售利润不高于进价的.在销售过程中发现,这种儿童玩具每天的销售量(件与销售单价(元满足一次函数关系.当销售单价为35元时,每天的销售量为350件;当销售单价为40元时,每天的销售量为300件.
(1)求与之间的函数关系式.
(2)当销售单价为多少时,该网店销售这种儿童玩具每天获得的利润最大,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC的三个顶点的坐标分别为,,.
(1)点A关于y轴对称的点的坐标是 ;
(2)将△ABC绕坐标原点O顺时针旋转180°,画出图形,直接写出点B的对应点的坐标;
(3)请直接写出:以A,B,C为顶点的平行四边形的第四个顶点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,AB是⊙O的直径,点C在AB的延长线上,AB=4,BC=2,P是⊙O上半部分的一个动点,连接OP,CP.
(1)求△OPC的最大面积;
(2)求∠OCP的最大度数;
(3)如图2,延长PO交⊙O于点D,连接DB,当CP=DB时,求证:CP是⊙O的切线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com