【题目】如图,在△ABC中,∠C=90°,BC=AC,D是AC上一点,AE⊥BD交BD的延长线于E,AE=BD,且DF⊥AB于F,求证:CD=DF
【答案】见解析
【解析】
延长AE、BC交于点F.根据同角的余角相等,得∠DBC=∠FAC;由ASA证明△BCD≌△ACF,得出AF=BD,AE=AF,由线段垂直平分线的性质得到AB=BF,再根据等腰三角形的三线合一得出BD是∠ABC的角平分线,由角平分线的性质定理即可得出结论.
证明:延长AE、BC交于点F. 如图所示:
∵AE⊥BE,
∴∠BEA=90°,
又∠ACF=∠ACB=90°,
∴∠DBC+∠AFC=∠FAC+∠AFC=90°,
∴∠DBC=∠FAC,
在△ACF和△BCD中,
,
∴△ACF≌△BCD(ASA),
∴AF=BD.
又AE=BD,
∴AE=AF,即点E是AF的中点,
∴AB=BF,
∴BD是∠ABC的角平分线,
∵∠C=90°,DF⊥AB于F,
∴CD=DF.
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到图①位置时,求证:DE=AD+BE;
(2)当直线MN绕点C旋转到图②位置时,试问:DE,AD,BE有怎样的等量关系?请写出这个等量关系,并加以证明.
(3)当直线MN绕点C旋转到图③位置时,DE,AD,BE之间的等量关系是 (直接写出答案,不需证明.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD的面积为y.(当点P与点A或D重合时,y=0)
(1)写出y与x之间的函数解析式;
(2)画出此函数的图象.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=7.5,AC=9,S△ABC=.动点P从A点出发,沿AB方向以每秒5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B点时,P、Q两点同时停止运动,以PQ为边作正△PQM(P、Q、M按逆时针排序),以QC为边在AC上方作正△QCN,设点P运动时间为t秒.
(1)求cosA的值;
(2)当△PQM与△QCN的面积满足S△PQM=S△QCN时,求t的值;
(3)当t为何值时,△PQM的某个顶点(Q点除外)落在△QCN的边上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若,则=__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.
(1)请直接写出y与x之间的函数关系式;
(2)如果每天获得160元的利润,销售单价为多少元?
(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着人们生活水平的不断提高,人们对生活饮用水质量要求也越来越高,更多的居民选择购买家用净水器.一商家抓住商机,从生产厂家购进了,两种型号家用净水器.已知购进2台型号家用净水器比1台型号家用净水器多用200元;购进3台型号净水器和2台型号家用净水器共用6600元
(1)求,两种型号家用净水器每台进价各为多少元?
(2)该商家用不超过26400元共购进,两种型号家用净水器20台,再将购进的两种型号家用净水器分别加价后出售,若两种型号家用净水器全部售出后毛利润不低于12000元,求商家购进,两种型号家用净水器各多少台?(注:毛利润售价进价)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com