【题目】如图是小米洗漱时的侧面示意图.洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小米身高160cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).
(1)此时小米头部E点与地面DK相距多少?
(2)若小米的头部E恰好在洗漱盆AB的中点O的正上方,她应向前或向后移动多少厘米?(sin80°≈0.98,cos80°≈0.18,≈1.41,结果精确到0.1)
【答案】(1)140.3cm;(2)14.7cm
【解析】
(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;
(2)求出OH、PH的值即可判断;
解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.
∵EF+FG=160,FG=100,
∴EF=60,
∵∠FGK=80°,
∴FN=100sin80°≈98
∵∠EFG=125°,
∴∠EFM=180°﹣125°﹣10°=45°,
∴FM=60cos45°=30≈42.3,
∴MN=FN+FM≈140.3,
∴此时小米头部E点与地面DK相距约为140.3cm.
(2)过点E作EP⊥AB于点P,延长OB交MN于H.
∵AB=48,O为AB中点,
∴AO=BO=24,
∵EM=60sin45°≈42.3,
∴PH≈42.3,
∵GN=100cos80°≈18,CG=15,
∴OH=24+15+18=57,OP=OH﹣PH=57﹣42.3=14.7,
∴他应向前14.7cm.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出旋转后的点关于原点的对称点,这称为一次变换,已知点A的坐标为(﹣1,0),则点A经过连续2018次这样的变换得到的点A2018的坐标是___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,,点是边上的一动点,连结.
(1)若将沿折叠,点落在矩形的对角线上点处,试求的长;
(2)点运动到某一时刻,过点作直线交于点,将与分别沿与折叠,点与点分别落在点,处,若,,三点恰好在同一直线上,且试求此时的长;
(3)当点运动到边的中点处时,过点作直线交于点,将与分别沿与折叠,点与点重合于点处,连结,请求出的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P的坐标是( )
A.(2020,0)B.(3030,0)C.( 3030,)D.(3030,﹣)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象经过点(0,1),对称轴为直线x=﹣1,下列结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c>0;⑤c﹣a>1.其中,正确结论的个数为( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:
(1)此次共调查了 名学生;
(2)将条形统计图1补充完整;
(3)图2中“小说类”所在扇形的圆心角为 度;
(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
(1)根据图中信息求出m= ,n= ;
(2)请你帮助他们将这两个统计图补全;
(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?
(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:
(1)求y与x之间的函数关系式;
(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?
(3)该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com