精英家教网 > 初中数学 > 题目详情

【题目】点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正确的是( )

A.甲、乙
B.丙、丁
C.甲、丙
D.乙、丁

【答案】C
【解析】∵b<a,

∴b﹣a<0;

∵b<﹣3,0<a<3,

∴a+b<0;

∵b<﹣3,0<a<3,

∴|b|>3,|a|<3,

∴|a|<|b|;

∵b<0,a>0,

∴ab<0,

∴正确的是:甲、丙.

所以答案是:C.

【考点精析】认真审题,首先需要了解数轴(数轴是规定了原点、正方向、单位长度的一条直线),还要掌握绝对值(正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是等腰△ABC底边BC上的高,点O是AC中点,延长DO到E

使AE∥BC,连接AE。

(1)求证:四边形ADCE是矩形;

(2)①若AB=17,BC=16,则四边形ADCE的面积=

②若AB=10,则BC= 时,四边形ADCE是正方形。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,河的两岸l1与l2相互平行,A,B是l1上的两点,C,D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线y=﹣ x2 x+c与x轴相交于A、B两点(B点在A点的左侧),与y轴相交于C点,且AB=10.

(1)求这条抛物线的解析式;
(2)如图2,D点在x轴上,且在A点的右侧,E点为抛物线上第二象限内的点,连接ED交抛物线于第二象限内的另外一点F,点E到y轴的距离与点F到y轴的距离之比为3:1,已知tan∠BDE= ,求点E的坐标;
(3)如图3,在(2)的条件下,点G由B出发,沿x轴负方向运动,连接EG,点H在线段EG上,连接DH,∠EDH=∠EGB,过点E作EK⊥DH,与抛物线相应点E,若EK=EG,求点K的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,∠A40°.点P是射线AB上一动点(与点A不重合)CECF分别平分∠ACP和∠DCP交射线AB于点EF

(1)求∠ECF的度数;

(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;

(3)当∠AEC=∠ACF时,求∠APC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,在平面直角坐标系中,一次函数yx+3x轴于点A,交y轴于点B,点C是点A关于y轴对称的点,过点Cy轴平行的射线CD,交直线AB与点D,点P是射线CD上的一个动点.

(1)求点AB的坐标.

(2)如图2,将△ACP沿着AP翻折,当点C的对应点C′落在直线AB上时,求点P的坐标.

(3)若直线OP与直线AD有交点,不妨设交点为Q(不与点D重合),连接CQ,是否存在点P,使得SCPQ2SDPQ,若存在,请求出对应的点Q坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】假期,某校为了勤工俭学,要完成整个A小区的绿化工作,开始由七年级单独工作了4天,完成整个绿化工作的三分之一,这时九年级也参加工作,两个年级又共同工作了2天,才全部完成整个绿化工作,则由九年级单独完成整个绿化工作需要____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小强作出边长为1的第1个等边△A1B1C1 , 计算器面积为S1 , 然后分别取△A1B1C1三边的中点A2、B2、C1 , 作出第2个等边△A2B2C2 , 计算其面积为S2 , 用同样的方法,作出第3个等边△A3B3C3 , 计算其面积为S3 , 按此规律进行下去,…,由此可得,第20个等边△A20B20C20的面积S20=

查看答案和解析>>

同步练习册答案