【题目】在三角形纸片ABC中,∠B=90°,∠A=30°,AC=4,点E在AC上,AE=3.将三角形纸片按图1方式折叠,使点A的对应点落在AB的延长线上,折痕为ED,交BC于点F.
(1)求∠CFE的度数;
(2)如图2,,继续将纸片沿BF折叠,点的对应点为,交DE于点G .求线段DG的长.
【答案】(1)60°;(2) .
【解析】
(1)由折叠的性质可得∠=30°,再由直角三角形两锐角互余得∠=60°,最后由对顶角相等求得∠CFE =60°;
(2)先求出DE=,再证明△CEF是等边三角形得EF=1,再证明 △EFG是等边三角形得GE=1,最后根据DG=DE-EG求出DG的长即可.
(1)∵∠A=30°,根据折叠的性质可得∠=30°.
∵∠=90°,
∴∠=90°-∠=90°-30°=60°.
∵∠CFE =∠,
∴∠CFE =60°.
(2)∵点A与点关于直线DE对称,
∴DE⊥.
∵∠A=30°,AE=3,
∴
由(1)知,∠CFE=60°,∠C=60°,
∴△CFE是等边三角形.
∴EF=CE=AC-AE=1.
同理,△EFG也是等边三角形,
∴
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线分别交轴、轴于点和点,且,满足.
(1)______,______.
(2)点在直线的右侧,且:
①若点在轴上,则点的坐标为______;
②若为直角三角形,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:
(1)a=40,m=1;
(2)乙的速度是80km/h;
(3)甲比乙迟h到达B地;
(4)乙车行驶小时或小时,两车恰好相距50km.
正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.
(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是 ;
(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;
(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知OP平分∠AOB,点Q在OP上,点M在OA上,且点Q,M均不与点O重合.在OB上确定点N,使QN =QM,则满足条件的点N的个数为( )
A.1 个B.2个C.1或2个D.无数个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB>BC,直线l垂直平分AC.
(1)如图1,作∠ABC的平分线交直线l于点D,连接AD,CD.
①补全图形;
②判断∠BAD和∠BCD的数量关系,并证明.
(2)如图2,直线l与△ABC的外角∠ABE的平分线交于点D,连接AD,CD.求证:∠BAD=∠BCD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,矩形ABCD被对角线AC分为两个直角三角形,AB=3,BC=6.现将Rt△ADC绕点C顺时针旋转90°,点A旋转后的位置为点E,点D旋转后的位置为点F.以C为原点,以BC所在直线为x轴,以过点C垂直于BC的直线为y轴,建立如图②的平面直角坐标系.
(1)求直线AE的解析式;
(2)将Rt△EFC沿x轴的负半轴平行移动,如图③.设OC=x(0<x≤9),Rt△EFC与Rt△ABO的重叠部分面积为s;求当x=1与x=8时,s的值;
(3)在(2)的条件下s是否存在最大值?若存在,求出这个最大值及此时x的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com