【题目】如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(
,1)在反比例函数
的图象上.
(1)求反比例函数
的表达式;
(2)在x轴的负半轴上存在一点P,使得S△AOP=
S△AOB,求点P的坐标;
(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.
![]()
【答案】(1)
;(2)P(
,0);(3)E(
,﹣1),在.
【解析】
试题分析:(1)将点A(
,1)代入
,利用待定系数法即可求出反比例函数的表达式;
(2)先由射影定理求出BC=3,那么B(
,﹣3),计算求出S△AOB=
×
×4=
.则S△AOP=
S△AOB=
.设点P的坐标为(m,0),列出方程求解即可;
(3)先解△OAB,得出∠ABO=30°,再根据旋转的性质求出E点坐标为(﹣
,﹣1),即可求解.
试题解析:(1)∵点A(
,1)在反比例函数
的图象上,∴k=
×1=
,∴反比例函数的表达式为
;
(2)∵A(
,1),AB⊥x轴于点C,∴OC=
,AC=1,由射影定理得
=ACBC,可得BC=3,B(
,﹣3),S△AOB=
×
×4=
,∴S△AOP=
S△AOB=
.
设点P的坐标为(m,0),∴
×|m|×1=
,∴|m|=
,∵P是x轴的负半轴上的点,∴m=﹣
,∴点P的坐标为(
,0);
(3)点E在该反比例函数的图象上,理由如下:
∵OA⊥OB,OA=2,OB=
,AB=4,∴sin∠ABO=
=
=
,∴∠ABO=30°,∵将△BOA绕点B按逆时针方向旋转60°得到△BDE,∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=
,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣OC=
,BC﹣DE=1,∴E(
,﹣1),∵
×(﹣1)=
,∴点E在该反比例函数的图象上.
科目:初中数学 来源: 题型:
【题目】如图:在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N。
(1)求证:MN=AM+BN;
![]()
(2)若过点C在△ABC内作直线MN,AM⊥MN于M,BN⊥MN于N,则AM、BN与MN之间有什么关系?请说明理由。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某运动员进行赛前训练,如果对他30次训练成绩进行统计分析,判断他的成绩是否稳定,则需要知道这10次成绩的( ).
A.众数B.方差C.平均数D.中位数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )
![]()
A. 当AB=BC时,它是菱形 B. 当AC⊥BD时,它是菱形
C. 当∠ABC=90°时,它是矩形 D. 当AC=BD时,它是正方形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形OABC为矩形,点A(0,8),C(6,0).动点P从点B出发,以每秒1个单位长的速度沿射线BC方向匀速运动,设运动时间为t秒.
(1)当t= s时,以OB、OP为邻边的平行四边形是菱形;
(2)当点P在OB的垂直平分线上时,求t的值;
(3)将△OBP沿直线OP翻折,使点B的对应点D恰好落在x轴上,求t的值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com