精英家教网 > 初中数学 > 题目详情

【题目】尺规作图:过直线外一点作已知直线的平行线.

已知:如图,直线l与直线l外一点P

求作:过点P与直线l平行的直线.

已知:如图,直线l与直线l外一点P

求作:过点P与直线l平行的直线.

作法如下:

1)在直线l上任取两点AB,连接APBP

2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M

3)过点PM作直线;

4)直线PM即为所求.

1)在直线l上任取两点AB,连接APBP

2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M

3)过点PM作直线;

4)直线PM即为所求.

请回答:PM平行于l的依据是_____

【答案】两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.

【解析】

利用画法得到PMABBMPA,则利用平行四边形的判定方法判断四边形ABMP为平行四边形,然后根据2平行四边形的性质得到PMAB

解:由作法得PMABBMPA

∴四边形ABMP为平行四边形,

PMAB

故答案为:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=6cm,BC=7cm,ABC=30°,点PA点出发,以1cm/s的速度向B点移动,点QB点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在平面直角坐标系中,直线l:y=x﹣x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=

(1)求抛物线的解析式;

(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PBx轴于点B,PCy轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PEPF;

(3)若(2)中的点P坐标为(6,2),点Ex轴上的点,点Fy轴上的点,当PEPF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线”.

1)如图1,在四边形中,,对角线平分.求证:是四边形相似对角线

2)如图2,已知格点,请你在正方形网格中画出所有的格点四边形,使四边形是以相似对角线的四边形;(注:顶点在小正方形顶点处的多边形称为格点多边形)

3)如图3,四边形中,点在射线上,点轴正半轴上,对角线平分,连接.是四边形相似对角线,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,ABC=ADC=90°,BDAC,垂足为P

(1)请作出RtABC的外接圆O;(保留作图痕迹,不写作法)

(2)点D在O上吗?说明理由;

(3)试说明:AC平分BAD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】体育老师为了解本校九年级女生1分钟仰卧起坐体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试,获得数据如下:

收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:

38 46 42 52 55 43 59 46 25 38

35 45 51 48 57 49 47 53 58 49

(1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整:

范围

25≤x≤29

30≤x≤34

35≤x≤39

40≤x≤44

45≤x≤49

50≤x≤54

55≤x≤59

人数

   

   

   

   

   

   

   

(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)

(2)分析数据:样本数据的平均数、中位数、满分率如下表所示:

平均数

中位数

满分率

46.8

47.5

45%

得出结论:①估计该校九年级女生在中考体育测试中1分钟仰卧起坐项目可以得到满分的人数为   

②该中心所在区县的九年级女生的1分钟仰卧起坐总体测试成绩如下:

平均数

中位数

满分率

45.3

49

51.2%

请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟仰卧起坐达标情况做一下评估,并提出相应建议.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD是等腰三角形,EBED;②折叠后∠ABE和∠CBD一定相等;③折叠后得到的图形是轴对称图形;④△EBA和△EDC一定是全等三角形.其中正确的是( )

A. ①②③B. ①③④C. ①②④D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图1,抛物线y=ax2+bx+3x轴交于点B、C,与y轴交于点A,且AO=CO,BC=4.

(1)求抛物线解析式;

(2)如图2,点P是抛物线第一象限上一点,连接PBy轴于点Q,设点P的横坐标为t,线段OQ长为d,求dt之间的函数关系式;

(3)在(2)的条件下,过点Q作直线l⊥y轴,在l上取一点M(点M在第二象限),连接AM,使AM=PQ,连接CP并延长CPy轴于点K,过点PPN⊥l于点N,连接KN、CN、CM.若∠MCN+∠NKQ=45°时,求t值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次安全知识测验中,学生得分均为整数,满分10分,成绩达到9分为优秀,这次测验中甲、乙两组学生人数相同,成绩如下两个统计图:

1)在乙组学生成绩统计图中,8分所在的扇形的圆心角为   度;

2)请补充完整下面的成绩统计分析表:

平均分

方差

众数

中位数

优秀率

甲组

7

1.8

7

7

20%

乙组

10%

3)甲组学生说他们的优秀率高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出两条支持乙组学生观点的理由.

查看答案和解析>>

同步练习册答案