【题目】如图,抛物线与y轴的交点为A,抛物线的顶点为.
(1)求出抛物线的解析式;
(2)点P为x轴上一点,当△PAB的周长最小时,求出点P的坐标.
【答案】(1)y=;(2)
【解析】
(1)已知A,B的坐标,运用待定系数法即可解答;
(2)先找A(0,-2)关于x轴的对称点为(0,2),连接B交x轴于点P,则此时△PAB的周长最小;然后再求出P所在直线的解析式,然后令y=0,即可完成解答.
解:(1)∵ 抛物线与y轴交于点A(0,-2),顶点为B(1,-3)
∴ 可设抛物线解析式,代入点A(0,-2)得a =1
∴抛物线解析式
(2)设点A(0,-2)关于x轴的对称点为(0,2),连接B交x轴于点P,则此时△PAB的周长最小
设直线B的解析式,代入点(0,2),B(1,-3)得:
解得:k=-5,b=2
∴ 直线B的解析式
当y=0时,
∴
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B,
(1)求抛物线的解析式;
(2)已知点D(m,m+1)在第一象限的抛物线上,求点D的坐标.
(3)设直线BC为y=mx+n(k≠0),若mx+n≥ax2+bx﹣4a,结合函数图象,写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两个一元二次方程:M:N:,其中,以下列四个结论中,错误的是( )
A、如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;
B、如果方程M有两根符号相同,那么方程N的两根符号也相同;
C、如果5是方程M的一个根,那么是方程N的一个根;
D、如果方程M和方程N有一个相同的根,那么这个根必是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=﹣1,与x轴的交点为(x1,0)、(x2,0),其中0<x1<1,有下列结论:①abc>0;②﹣3<x2<﹣2;③4a﹣2b+c<﹣1;④当m为任意实数时,a﹣b<am2+bm;⑤若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑥a>.其中,正确结论的个数为( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=a(x﹣h)2+k(a≠0)的图象是抛物线,定义一种变换,先作这条抛物线关于原点对称的抛物线y′,再将得到的对称抛物线y′向上平移m(m>0)个单位,得到新的抛物线ym,我们称ym叫做二次函数y=a(x﹣h)2+k(a≠0)的m阶变换.
(1)已知:二次函数y=2(x+2)2+1,它的顶点关于原点的对称点为 ,这个抛物线的2阶变换的表达式为 .
(2)若二次函数M的6阶变换的关系式为y6′=(x﹣1)2+5.
①二次函数M的函数表达式为 .
②若二次函数M的顶点为点A,与x轴相交的两个交点中左侧交点为点B,在抛物线y6′=(x﹣1)2+5上是否存在点P,使点P与直线AB的距离最短,若存在,求出此时点P的坐标.
(3)抛物线y=﹣3x2﹣6x+1的顶点为点A,与y轴交于点B,该抛物线的m阶变换的顶点为点C.若△ABC是以AB为腰的等腰三角形,请直按写出m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确的是 .(填正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y-x称为P点的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”
(1)①点A(1,3) 的“坐标差”为 。
②抛物线y=-x2+3x+3的“特征值”为 。
(2)某二次函数y=-x2+bx+c(c≠0) 的“特征值”为1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等。
①直接写出m= (用含c的式子表示)
②求此二次函数的表达式。
(3)如图,在平面直角坐标系xOy中,以M(2,3)为圆心,2为半径的圆与直线y=x相交于点D、E请直接写出⊙M的“特征值”为 。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O内有折线OABC,点B、C在圆上,点A在⊙O内,其中OA=4cm,BC=10cm,∠A=∠B=60°,则AB的长为_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com