精英家教网 > 初中数学 > 题目详情

【题目】若平面直角坐标系内的点满足横、纵坐标都为整数,则把点叫做 “整点”.例如:都是“整点”,抛物线)与轴交于两点,若该抛物线在之间的部分与线段所围成的区域(包括边界)恰有七个整点,则的取值范围是(  )

A.B.

C.D.

【答案】D

【解析】

首先将二次函数的表达式化为顶点式,确定函数的顶点,可以直接得到三点必在该抛物线在之间的部分与线段所围成的区域内(包括边界),然后向外扩充4个整点,找到,最后结合图象确定函数与x轴的交点A的横坐标范围,进而求出m的范围,一定要结合点是边界点时,m的取值,否则会使m的范围过大.

由题意可得

∴函数的顶点是

∴点三点必在该抛物线在之间的部分与线段所围成的区域内(包括边界)

∵在此区域有7个整点

∴必有点

∴当点在边界上时,

与x轴的交点A的横坐标

综上所述,

故答案为:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】列方程解应用题:

某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按元销售时,每天可销售个;若销售单价每降低元,每天可多售出个.已知每个玩具的固定成本为元,问这种玩具的销售单价为多少元时,厂家每天可获利润元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市教委为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,启动了学生阳光体育运动,其中有一项是短跑运动,短跑运动可以锻炼人的灵活性,增强人的爆发力,因此张明和李亮在课外活动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:

成绩统计分析表

1)张明第2次的成绩为__________秒;

2)请补充完整上面的成绩统计分析表;

3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁? 请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,正方形中,点是对角线的中点,点是线段(不与重合)的一个动点,过点交边于点

(1)求证:

(2)如图②,若正方形的边长为2,过于点,在点运动的过程中,的长度是否发生变化?若不变,试求出这个不变的值;若变化,请说明理由.

(3)如图③,用等式表示线段之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB的直径,点PBA的延长线上,PD于点D,过点B,交PD的延长线于点C,连接AD并延长,交BE于点E

(Ⅰ)求证:AB=BE

(Ⅱ)连结OC,如果PD=2,∠ABC=60°,求OC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线与直线有两个不同的交点.下列结论:①;②当时,有最小值;③方程有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则;其中正确的结论的个数是(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点的坐标为,点分别在轴,轴的正半轴上运动,且,下列结论:

②当时四边形是正方形

③四边形的面积和周长都是定值

④连接,则,其中正确的有(

A.①②B.①②③C.①②④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】疫情爆发,某企业准备转型生产口罩.该企业在市场上物色到两种生产口罩的设备,若采购2型设备,5型设备则共需要430万元;若采购5型设备,2型设备则共需要550万元.已知型设备每台每天可以生产19万片口罩;型设备每台每天可以生产8万片口罩.

1)求两型设备的采购单价分别是多少万元/台?

2)该企业准备采购两型设备共10台,但能用来采购设备的资金不超过700万元,那么如何安排采购方案,用这些设备每天生产的口罩最多?每天最多可生产多少万片口罩?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,O为坐标原点,点Bx轴的正半轴上,四边形OACB是平行四边形..反比例函数在第一象限内的图象经过点A,交BC的中点F.且

1)求k值和点C的坐标;

2)过点FEFOB,交OA于点E(如图②),点P为直线EF上的一个动点,连接PAPO.是否存在这样的点P,使以POA为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案