精英家教网 > 初中数学 > 题目详情

【题目】如图,的直径,弦相交于点,且于点,过点的切线交的延长线于点

1)求证:

2)若的半径为5,点的中点,,写出求线段长的思路.

【答案】1)见解析;(2)求解思路见解析.

【解析】

1)连接OC,根据切线定理可知,根据得到,利用同圆半径相等得到,进而得到,再利用对顶角以及等量代换即可完成.

2)思路一:过圆心且点的中点,由垂径定理可得

互余,互余可得,从而可知

中,由,可设,由勾股定

理,得,可解得的值;

,可求的长.

思路二:连接,如图3

的直径,可得是直角三角形,知互余,

可知互余,得

,可得,从而可知

中,由,可设

由勾股定理,得,可解得的值;

,可求的长.

1)证明:连接,如图1

的切线,

又∵

2)求解思路如下:

思路一:连接,如图2

过圆心且点的中点,由垂径定理可得

互余,互余可得,从而可知

中,由,可设,由勾股定理,得,可解得的值;

,可求的长.

思路二:连接,如图3

的直径,可得是直角三角形,知互余,

可知互余,得

,可得,从而可知

中,由,可设

由勾股定理,得,可解得的值;

,可求的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单位:小时),将学生分成五类: 类( ),类(),类(),类(),类(),绘制成尚不完整的条形统计图如图11.

根据以上信息,解答下列问题:

1 类学生有 人,补全条形统计图;

2类学生人数占被调查总人数的 %

(3)从该班做义工时间在的学生中任选2人,求这2人做义工时间都在 中的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“新冠肺炎”肆虐,无数抗疫英雄涌现,以下四位抗疫英雄是钟南山、李兰娟、李文亮、张定宇(依次记为).为让同学们了解四位的事迹,老师设计如下活动:取四张完全相同的卡片,分别写上四个标号,然后背面朝上放置,搅匀后每个同学从中随机抽取一张,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相应抗疫英雄的资料,并做成小报.

1)班长在四种卡片中随机抽到标号为的概率为_______

2)平平和安安两位同学抽到的卡片是不同英雄的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点到直线的距离即为点到直线的垂线段的长.

1)如图1,取点M10),则点M到直线lyx1的距离为多少?

2)如图2,点P是反比例函数y在第一象限上的一个点,过点P分别作PMx轴,作PNy轴,记P到直线MN的距离为d0,问是否存在点P,使d0?若存在,求出点P的坐标,若不存在,请说明理由.

3)如图3,若直线ykx+m与抛物线yx24x相交于x轴上方两点ABAB的左边).且∠AOB90°,求点P20)到直线ykx+m的距离最大时,直线ykx+m的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是“已知底边及底边上的高线作等腰三角形”的尺规作图过程.

已知:线段.求作:等腰,使边上的高为.作法:如图,(1)作线段;(2)作线段的垂直平分线于点;(3)在射线上顺次截取线段,连接.所以即为所求作的等腰三角形.

请回答:得到是等腰三角形的依据是:

_____

_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCDE分别在边ABAC上,下列条件中,不能确定ADE∽△ACB的是(  )

A. AED=∠B B. BDE+C180°

C. ADBCACDE D. ADABAEAC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在梯形ABCD中,ADBCBC18DBDC15,点EF分别在线段BDCD上,DEDF5AE的延长线交边BC于点GAFBD于点N、其延长线交BC的延长线于点H

1)求证:BGCH

2)设ADxADN的面积为y,求y关于x的函数解析式,并写出它的定义域;

3)联结FG,当HFGADN相似时,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在中,.过点,动点在射线上(点不与重合),联结并延长到点,使

1)求的面积;

2)设,求关于的函数解析式,并写出的取值范围;

3)连接,如果是直角三角形,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若抛物线轴相交于两点,与轴相交于点,直线经过点

1)求抛物线的解析式;

2)点是直线下方抛物线上一动点,过点轴于点,交于点,连接

①线段是否有最大值?如果有,求出最大值;如果没有,请说明理由;

②在点运动的过程中,是否存在点,恰好使是以为腰的等腰三角形?如果存在,请直接写出点的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案