【题目】“新冠肺炎”肆虐,无数抗疫英雄涌现,以下四位抗疫英雄是钟南山、李兰娟、李文亮、张定宇(依次记为).为让同学们了解四位的事迹,老师设计如下活动:取四张完全相同的卡片,分别写上四个标号,然后背面朝上放置,搅匀后每个同学从中随机抽取一张,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相应抗疫英雄的资料,并做成小报.
(1)班长在四种卡片中随机抽到标号为的概率为_______.
(2)平平和安安两位同学抽到的卡片是不同英雄的概率是多少?
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线的顶点为,与轴相交于点,对称轴为直线,点是线段的中点.
(1)求抛物线的表达式;
(2)写出点的坐标并求直线的表达式;
(3)设动点,分别在抛物线和对称轴l上,当以,,,为顶点的四边形是平行四边形时,求,两点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中.抛物线y=﹣x2+4x+3与y轴交于点A,抛物线的对称轴与x轴交于点B,连接AB,将△OAB绕着点B顺时针旋转得到△O'A'B.
(1)用配方法求抛物线的对称轴并直接写出A,B两点的坐标;
(2)如图1,当点A'第一次落在抛物线上时,∠O'BO=n∠OAB,请直接写出n的值;
(3)如图2,当△OAB绕着点B顺时针旋转60°,直线A'O'交x轴于点M,求△A'MB的面积;
(4)在旋转过程中,连接OO',当∠O'OB=∠OAB时.直线A'O'的函数表达式是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在证明等腰三角形的判定定理“等角对等边”,即“如图,已知:∠B=∠C,求证:AB=AC”时,小明作了如下的辅助线,下列对辅助线的描述正确的有( )
①作∠BAC的平分线AD交BC于点D②取BC边的中点D,连接AD③过点A作AD⊥BC,垂足为点D④作BC边的垂直平分线AD,交BC于点D
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,D为BC上一点(能与B重合,不与C重合),以DC为直径的半圆O,交AC于点E.
(1)如图1,若点D与点B重合,半圆交AB于点F,求证:AE=AF.
(2)设∠B=60°,若半圆与AB相切于点T,在图2中画出相应的图形,求∠AET的度数.
(3)设∠B=60°,BC=6,△ABC的外心为点P,若点P正好落在半圆与其直径组成的封闭图形的内部,直接写出DC的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线与轴交于点,与轴交于点.
(1)求,的值;
(2)点是第一象限抛物线上一动点,过点作轴的垂线,交于点.当△为等腰三角形时,求点的坐标;
(3)如图2,抛物线顶点为,已知直线与二次函数图象相交于,两点.求证:无论为何值,△恒为直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图.在中,,,,是的中位线,连结,点是边上的一个动点,连结交于,交于.
(1)当点是的中点时,求的值及的长
(2) 当四边形与四边形的面积相等时,求的长:
(3)如图2.以为直径作.
①当正好经过点时,求证:是的切线:
②当的值满足什么条件时,与线段有且只有一个交点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.
(1)求A、B、C三点的坐标;
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;
(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com