【题目】如图,三角形ABC的三个顶点坐标为:A(1,4),B(﹣3,3),C(2,﹣1),三角形ABC内有一点P(m,n)经过平移后的对应点为P1(m+3,n-2),将三角形ABC做同样平移得到三角形A1B1C1.
(1)在图中画出三角形A1B1C1, 并写出A1、B1、C1三点的坐标;
(2)求三角形A1B1C1的面积.
(3)若以A,B,C,D为顶点的四边形是平行四边形,请直接写出点D的坐标.
【答案】(1)A1的坐标为(4,2),B1的坐标为(0,1),C1的坐标为(5,3);△A1B1C1见解析(2)S△ABC=10.5(3)D点坐标为(-2,-2)或(6,0)或(-4,8)
【解析】
(1)由点P的对应点P1的坐标得出平移的方向和距离,据此依据平移的点的坐标变化规律可得;
(2)根据割补法即可求解;
(3)根据平行四边形的特点在图中找到D点即可求解..
(1)由点P(m,n)经过平移后的对应点为P1(m+3,n2)知需将△ABC先向右平移3个单位、再向下平移2个单位,
则点A(1,4)的对应点A1的坐标为(4,2),B(3,3)的对应点B1的坐标为(0,1),C(2,1)的对应点C1的坐标为(5,3);△A1B1C1即为所求
(2)S△ABC=5×5-×4×1-×5×1-×4×5=10.5
(3)如图,D点坐标为(-2,-2)或(6,0)或(-4,8)
科目:初中数学 来源: 题型:
【题目】已知一次函数y=kx+b,当x=2时,y=﹣3,当x=1时,y=﹣1.
(1)求一次函数的解析式;
(2)若该一次函数的图形交x轴y轴分别于A、B两点,求△ABO的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知线段AB,点C在直线AB上,D为线段BC的中点.
(1)若AB=8 ,AC=2,求线段CD的长.
(2)若点E是线段AC的中点,直接写出线段DE和AB的数量关系是________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在线段AB上取一点C,分别以AC、BC为边长作菱形ACDE和菱形BCFG,使点D在CF上,连接EG,H是EG的中点,EG=4,则CH的长是___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,M、N分别是边AD、BC边上的中点,且△ABM≌△DCM;E、F分别是线段BM、CM的中点.
(1)求证:平行四边形ABCD是矩形.
(2)求证:EF与MN互相垂直.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:
(1)九(1)班的学生人数为40,并把条形统计图补充完整;
(2)扇形统计图中m=10,n=20,表示“足球”的扇形的圆心角是72度;
(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(探索新知)如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.
(1)若AC=3,则AB= ;
(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB;
(深入研究)如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.
(3)若点M、N均为线段OC的圆周率点,求线段MN的长度.
(4)图2中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:
(1)图1中“统计与概率”所在扇形的圆心角为 度;
(2)图2、3中的a= ,b= ;
(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一艘救生船在码头A接到小岛C处一艘渔船的求救信号,立即出发,沿北偏东67°方向航行10海里到达小岛C处,将人员撤离到位于码头A正东方向的码头B,测得小岛C位于码头B的北偏西53°方向,求码头A与码头B的距离.【参考数据:sin23°≈0.39,cos23°≈0.92,tan23°≈0.42,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75】
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com