精英家教网 > 初中数学 > 题目详情

【题目】如图,已知EFBCADBC 1=2

⑴判断DMAB的位置关系,并说明理由;

⑵若∠BAC=70°,DM平分∠ADC,求∠ACB的度数。

【答案】1AB//DM 265°

【解析】

(1)AB//DM. 欲证明AB//DM,只需推知∠BAD=∠2即可.

(2)由DM平分∠ADM,可推知∠2=∠BAD=45°,利用三角形内角和定理可求得∠ACB的度数.

解:AB∥DM.理由如下:

∵AD⊥BC,EF⊥BC,

∴EF∥AD,

∴∠1=∠BAD,

又∵∠1=∠2,

∴∠BAD=∠2,

∴AB∥DM.

(2)解:∵AD⊥BC,DM平分∠ADC,

∴∠2=45°,

∴∠BAD=∠2=45°,

又∵∠BAC=70°,

∴∠CAD=70°-45°=25°,

∴∠ACB=180°-90°-25°=65°.

故答案为:65°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图长方形OABC的位置如图所示,点B的坐标为(8,4),点P从点C出发向点O移动,速度为每秒1个单位;点Q同时从点O出发向点A移动,速度为每秒2个单位,设运动时间为t(0≤t≤4)

(1)填空:点A的坐标为 ,点C的坐标为 ,点P的坐标为 (用含t的代数式表示)

(2)当t为何值时,P、Q两点与原点距离相等?

(3)在点P、Q移动过程中,四边形OPBQ的面积是否变化?说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:

二次根式的除法,要化去分母中的根号,需将分子、分母同乘以一个恰当的二次根式.

例如:化简

解:将分子、分母同乘以得:

类比应用:

1)化简:

2)化简:

拓展延伸:

宽与长的比是的矩形叫黄金矩形.如图①,已知黄金矩形ABCD的宽AB=1

1)黄金矩形ABCD的长BC=

2)如图②,将图①中的黄金矩形裁剪掉一个以AB为边的正方形ABEF,得到新的矩形DCEF,猜想矩形DCEF是否为黄金矩形,并证明你的结论;

3)在图②中,连结AE,则点D到线段AE的距离为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,,点上一个动点,连接,将沿折叠,点落在点处,连接,若是直角三角形,则的长为___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)
(参考数据:sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测量出楼房AC的高度,从距离楼底C处60 米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1: 的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈ ,计算结果用根号表示,不取近似值).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某开发区有一块四边形的空地ABCD,现计划在空地上种植草皮,经测量∠A90°AB3mBC12mCD13mDA4m,若每平方米草皮需要200元,则要投入_____元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知矩形ABCD,把△BCD沿BD翻折,得△BDGBGAD所在的直线交于点E,过点DDFBEBC所在直线于点F

1)求证:四边形DEBF是菱形;

2)若AB8AD4,求四边形BEDF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,BPO=45°,试判断此车是否超过了每小时80千米的限制速度?

查看答案和解析>>

同步练习册答案