【题目】结合数轴与绝对值的知识回答下列问题:
(1)数轴上表示和的两点之间的距离是______;表示和两点之间的距离是____;一般地,数轴上表示数和数的两点之间的距离等于,如果表示数和的两点之间的距离是,那么 .
(2)若数轴上表示数的点位于与之间,求的值.
(3)当取 时,的值最小,最小值是 .
【答案】(1)3,5,1或-5;(2)6;(3)1,9
【解析】
(1)根据两点间的距离公式即可求解;
(2)先计算绝对值,再合并同类项即可求解;
(3)根据表示一点到-5,1,4三点的距离的和.即可求解.
(1)数轴上表示4和1的两点之间的距离是4-1=3;表示-3和2两点之间的距离是2-(-3)=5;
依题意有|a-(-2)|=3,
∴a-(-2)=3或a-(-2)=-3
解得a=1或-5.
故答案为:3,5,1或-5;
(2)∵数a的点位于-4与2之间,
∴a+4>0,a-2<0
∴|a+4|+|a-2|
=a+4-a+2
=6;
(3)根据表示一点到-5,1,4三点的距离的和.
所以当a=1时,式子的值最小,
此时的最小值是9.
故答案为:1,9.
科目:初中数学 来源: 题型:
【题目】小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A在双曲线y=的第一象限的那一支上,AB垂直于x轴与点B,
点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE
的面积为3,则k的值为 ▲ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是( )
捐款数额 | 10 | 20 | 30 | 50 | 100 |
人数 | 2 | 4 | 5 | 3 | 1 |
A. 众数是100 B. 中位数是30 C. 极差是20 D. 平均数是30
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装厂生产一种夹克和T恤,夹克每件定价180元,T恤每件定价60元,厂家在开展促销活动期间,向顾客提供了两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款;现在某客户要到该厂购买夹克30件,T恤件(>).
(1)若该客户按方案①购买付款 元(用含的式子表示);若该客户按方案②购买付款 元(用含的式子表示).
(2)当时,通过计算说明方案①、方案②哪种方案购买较为合算?
(3)当时,你能给出更为省钱的购买方案吗?试写出你的购买方法.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
已知,,,…都是不等于0的有理数,若,求的值.
解:当时,;当时,,所以参照以上解答,试探究以下问题:
(1)若,求的值
(2)若,则的值为__________;
(3)由(1)、(2)试猜想,共有__________个不同的值,在这些不同的值中,最大的值和最小的值的差等于__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学的高中部在A校区,初中部在B校区,学校学生会计划在3月12日植树节当天安排部分学生到郊区公园参加植树活动.已知A校区的每位高中学生往返车费是6元,B校区的每位初中学生往返的车费是10元,要求初、高中均有学生参加,且参加活动的初中学生比参加活动的高中学生多4人,本次活动的往返车费总和不超过210元,求初、高中最多各有多少学生参加.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB、CD相交于点O,过点O作两条射线OM、ON,且∠AOM=∠CON=90°
(1)若OC平分∠AOM,求∠AOD的度数.
(2)若∠1=∠BOC,求∠AOC和∠MOD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com