精英家教网 > 初中数学 > 题目详情

【题目】在一个箱子里放有个白球和个红球,它们除颜色外其余都相同.

判断下列甲乙两人的说法,认为对的在后面括号内答“√”,错的打”.

甲:从箱子里摸出一个球是白球或者红球这一事件是必然事件________;

乙:从箱子里摸出一个球,记下颜色后放回,搅匀,这样连续操作三次,其中必有一次摸到的是白球________;

小明说:从箱子里摸出一个球,不放回,再摸出一个球,则摸出的球中有白球这一事件的概率为,你认同吗?请画树状图或列表计算说明.

【答案】(1)(2)不认同,理由详见解析.

【解析】

(1)由必然事件与随机事件的定义,即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的球中有白球的情况,再利用概率公式即可求得答案.

(1)√

不认同.

画树状图得:

∵共有种等可能的结果,摸出的球中有白球的有种情况,

(摸出的球中有白球)

故不认同.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一辆汽车行驶时的耗油量为0.1/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.

(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;

(2)求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子中有1个红球和2个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回,搅匀,再从中任意摸出1个球,像这样有放回地先后摸球2.摸出红球得2分,摸出黑球得1.

(1)第一次摸出黑球的概率是多少?

(2)两次摸球所得总分为4分的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2015镇江)

活动1:在一只不透明的口袋中装有标号为1233个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三位同学丙乙的顺序依次从袋中各摸出一个球(不放回),摸到1号球胜出,计算甲胜出的概率.(注:丙乙表示丙第一个摸球,甲第二个摸球,乙最后一个摸球)

活动2:在一只不透明的口袋中装有标号为12344个小球,这些球除标号外都相同,充分搅匀,请你对甲、乙、丙三名同学规定一个摸球顺序: ,他们按这个顺序从袋中各摸出一个球(不放回),摸到1号球胜出,则第一个摸球的同学胜出的概率等于 ,最后一个摸球的同学胜出的概率等于

猜想:在一只不透明的口袋中装有标号为123nn为正整数)的n个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三名同学从袋中各摸出一个球(不放回),摸到1号球胜出,猜想:这三名同学每人胜出的概率之间的大小关系.

你还能得到什么活动经验?(写出一个即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?请完成下列问题:

(1)未降价之前,某商场衬衫的总盈利为    元.

(2)降价后,设某商场每件衬衫应降价x元,则每件衬衫盈利   元,平均每天可售出   件(用含x的代数式进行表示)

(3)请列出方程,求出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是某同学对多项式(x24x+2)(x24x+6+4进行因式分解的过程

解:设x24xy

原式=(y+2)(y+6+4 (第一步)

y2+8y+16 (第二步)

=(y+42(第三步)

=(x24x+42(第四步)

1)该同学第二步到第三步运用了因式分解的   (填序号).

A.提取公因式 B.平方差公式

C.两数和的完全平方公式 D.两数差的完全平方公式

2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?   .(填)如果否,直接写出最后的结果   

3)请你模仿以上方法尝试对多项式(x22x)(x22x+2+1进行因式分解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABCAB=AC,点DBC的中点,点EAD上,连接BECE.

(1)求证:BE=CE

(2)如图2,若BE的延长线交AC于点FBF ⊥AC,垂足为F,原题设其它条件不变.求证:∠CAD=∠CBF

(3)(2)的条件下,若BAC=45,判断△CFE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE∠BAC的外角平分线AD相交于点P,分别交ACBC的延长线于E,D.过PPF⊥ADAC的延长线于点H,交BC的延长线于点F,连接AFDH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(13)B(51)C(21).

(1)ABC的面积为______.

(2)在图中作出△ABC关于x轴的对称图形△A1B1C1,并写出点A1的坐标.

(3)请说明△A2B2C2是由△A1B1C1经过怎样的变换得到的?

查看答案和解析>>

同步练习册答案