【题目】如图所示,在△ABC中,AB=AC=20cm,BC=16cm,D为AB中点,如果点P在线段BC上由点B出发向点C运动,同时点Q在线段CA上由点C出发向点A运动,设运动时间为t(s).
(1)若点P与点Q的速度都是2cm/s,问经过多少时间△BPD与△CQP全等?说明理由;
(2)若点P的速度比点Q的速度都慢2cm/s,则经过多少时间△BPD与△CQP全等,并求出此时两点的速度;
(3)若点P、点Q分别以(2)中速度同时从B、C出发,都逆时针沿△ABC三边运动,问经过多少时间点P与点Q第一次相遇,相遇点在△ABC的哪条边上?并求出相遇点与点B的距离.
【答案】(1)经过3s△BPD与△CQP全等;(2)当运动时间为1s时,△BPD与△CPQ全等,此时点P的速度为8cm/s,点Q的速度为10cm/s;(3)第一次相遇在AB边上,此时相遇点与点B的距离8cm.
【解析】
(1)根据等腰三角形的性质可得出∠B=∠C,由点P、Q同速同时出发可得出BP=CQ,结合全等三角形的判定定理可得出当BD=CP时△BPD与△CQP全等,进而即可得出关于t的一元一次方程,解之即可得出结论;
(2)设点P的速度为xcm/s,则点Q的速度为(x+2)cm/s,由BP≠CQ、∠B=∠C结合全等三角形的性质可得出BD=CQ、BP=CP=8,进而即可得出关于t、x的方程组,解之即可得出结论;
(3)根据路程=速度×时间结合点P、Q相遇,即可得出关于t的一元一次方程,解之可求出t值,由点Q的路程=点Q的速度×运动时间可求出点Q的路程,再结合CA、AB、BC的长度,即可找出点P、Q第一次相遇时的位置,此题得解.
解:(1)∵AB=AC,
∴∠B=∠C.
∵点P与点Q的速度都是2cm/s,
∴BP=CQ,
∴当BD=CP时,△BPD与△CQP全等,即10=16﹣2t,
解得t=3,
∴经过3s△BPD与△CQP全等.
(2)设点P的速度为xcm/s,则点Q的速度为(x+2)cm/s.
∵BP≠CQ,∠B=∠C,
∴BD=CQ,BP=CP=8,
∴ ,
解得:.
∴当运动时间为1s时,△BPD与△CPQ全等,此时点P的速度为8cm/s,点Q的速度为10cm/s.
(3)根据题意得:10t=40+8t,
解得:t=20,
∴Q的路程=10×20=200(cm),
∵200=(20+20+16)×3+20+12,20﹣12=8,
∴第一次相遇在AB边上,此时相遇点与点B的距离8cm.
科目:初中数学 来源: 题型:
【题目】如图是一个由正方形ABCD和半圆O组成的封闭图形,点O是圆心.点P从点A出发,沿线段AB,弧BC和线段CD匀速运动,到达终点D.运动过程中OP扫过的面积(s)随时间(t)变化的图象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装店用8000元购进一批衬衫,以58元/件的价格出售,很快售完,然后又用17600元购进同款衬衫,购进数量是第一次的2倍,购进的单价比上一次每件多4元,服装店仍按原售价58元/件出售,并且全部售完.
(1)该服装店第一次购进衬衫多少件?
(2)将该服装店两次购进衬衫看作一笔生意,那么这笔生意是盈利还是亏损?求出盈利(或亏损)多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.
(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;
(2)求原来的路线AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,然后解答后面的问题.
我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2x+3y=12,得,(x、y为正整数)∴则有0<x<6.又为正整数,则为正整数.
由2与3互质,可知:x为3的倍数,从而x=3,代入.
∴2x+3y=12的正整数解为
问题:
(1)请你写出方程2x+y=5的一组正整数解:______;
(2)若为自然数,则满足条件的x值有______个;
A、2B、3C、4D、5
(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形中,点E是边AB的中点,延长DE交CB的延长线于点F.
(1)求证:;
(2)若,连接EC,则的度数是__________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.
(1)求该店有客房多少间?房客多少人?
(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com