分析 根据桥的拱形可近似看成抛物线y=-$\frac{1}{400}(x-80)^{2}$+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,AC=$\frac{17}{4}$米,可知点C的纵坐标,然后代入抛物线解析式可以求得点C和点D对应的点的横坐标,从而可以求得宽度CD的长度.
解答 解:∵桥的拱形可近似看成抛物线y=-$\frac{1}{400}(x-80)^{2}$+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,AC=$\frac{17}{4}$米,
∴点C对应的纵坐标为:-$\frac{17}{4}$,
将y=-$\frac{17}{4}$代入y=-$\frac{1}{400}(x-80)^{2}$+16,得
$-\frac{17}{4}=-\frac{1}{400}(x-80)^{2}+16$,
解得x1=-10,x2=170,
宽度CD=170-(-10)=180米.
故答案为:180.
点评 本题考查二次函数的应用,解题的关键是明确题意找出所求问题需要的条件.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (x+10%)元 | B. | x(1+10%)元 | C. | $\frac{x}{1-10%}$元 | D. | $\frac{x}{1+10%}$元 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com