【题目】如图,若六边形是的内接正六边形,则________,________,________,________.
【答案】90° 30°, 60°, 120
【解析】
连接OE,OB,由六边形ABCDEF是⊙O的内接正六边形,即可求得圆心角∠EOD=∠AOB=60°,即可判定△OED与△OAB是等边三角形,根据等边三角形的性质,即可求得∠DAB与∠EDA的度数,然后根据圆周角定理,求得∠EAD的度数,由三角形的内角和定理,即可求得∠AED的度数,然后根据正六边形的性质,求得∠AFE的度数,由等腰三角形的性质,求得∠FAE的度数.
连接OE,OB,
∵六边形ABCDEF是⊙O的内接正六边形,
∴∠EOD=∠AOB=×360°=60°,
∵OE=OD,OA=OB,
∴△OED与△OAB是等边三角形,
∴∠ADE=∠DAB=60°;
∴∠EAD=∠EOD=×60°=30°,
∴∠AED=180°-∠EAD-∠ADE=90°;
∵六边形ABCDEF是正六边形,
∴∠EFA==120°,
∵AF=EF,
∴∠FAE==30°.
∴∠AED=90°,∠FAE=30°,∠DAB=60°,∠EFA=120°.
故答案为:90°,30°,60°,120°.
科目:初中数学 来源: 题型:
【题目】某公司根据市场计划调整投资策略,对,两种产品进行市场调查,收集数据如表:
项目 产品 | 年固定成本 (单位:万元) | 每件成本 (单位:万元) | 每件产品销售价 (万元) | 每年最多可生产的件数 |
其中是待定常数,其值是由生产的材料的市场价格决定的,变化范围是,销售产品时需缴纳万元的关税,其中为生产产品的件数,假定所有产品都能在当年售出,设生产,两种产品的年利润分别为、(万元),写出、与之间的函数关系式,注明其自变量的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)已知:如图1,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.
(2)如图2所示,△ABC的顶点分别为A(﹣4,5),B(﹣3,2),C(4,﹣1)
①作出△ABC关于x轴对称的图形△A1B1C1;
②用三角板作出△ABC的AB边上的高CH.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国家实行一系列“三农”优惠政策后,农民收入大幅度增加.某乡所辖村庄去年的年人均收入(单位:元)情况如下表:
年人均收入 | 3 500 | 3 700 | 3 800 | 3 900 | 4 500 |
村庄个数 | 1 | 1 | 3 | 3 | 1 |
该乡去年各村庄年人均收入的中位数是( )
A.3 700元B.3 800元C.3 850元D.3 900元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】山西皮影戏又称“影戏”或“影子戏”,属于传统民间艺术,皮影是一种以兽皮或纸板做成的人物剪影,在制作人物剪影中,给出下面4个条件:①;②;③;④.
(1)在上述四个条件中,选三个条件作为题设,另一个作为结论,其中真命题有哪几个?(用序号表示即可)
(2)请选择(1)中的一个命题证明其正确性.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=kx﹣3的图象经过点A,且函数值y随x的增大而增大,则点A的坐标不可能是( )
A.(﹣2,﹣4)B.(﹣1,2)C.(5,1)D.(﹣1,﹣4)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com