精英家教网 > 初中数学 > 题目详情

【题目】如图,公交车行驶在笔直的公路上,这条路上有A,B,C,D四个站点,每相邻两站之间的距离为5千米,从A站开往D站的车称为上行车,从D站开往A站的车称为下行车,第一班上行车、下行车分别从A站、D站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A,D站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.

(1)问第一班上行车到B站、第一班下行车到C站分别用时多少?

(2)若第一班上行车行驶时间为t小时,第一班上行车与第一班下行车之间的距离为s千米,求st的函数关系式;

(3)一乘客前往A站办事,他在B,C两站间的P处(不含B,C站),刚好遇到上行车,BP=x千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B站或走到C站乘下行车前往A站.若乘客的步行速度是5千米/小时,求x满足的条件.

【答案】(1);(2)当0≤t≤ 时,s=15﹣60t,当<t≤时,s=60t﹣15;(3)0<x≤4≤x<5.

【解析】

(1)根据时间=路程÷速度列式即可求解;
(2)由于t=时,第一班上行车与第一班下行车相遇,所以分0≤t≤<t≤ 两种情况讨论即可;
(3)由(2)可知同时出发的一对上、下行车的位置关于BC中点对称,设乘客到达A站总时间为t分钟,分三种情况进行讨论:①x=2.5;②x<2.5;③x>2.5.

(1)第一班上行车到B站用时 小时,

第一班下行车到C站分别用时小时;

(2)当0≤t≤ 时,s=15﹣60t,当<t≤时,s=60t﹣15;

(3)由(2)可知同时出发的一对上、下行车的位置关于BC中点对称,设乘客到达A站总时间为t分钟,

①当x=2.5时,往B站用时30分钟,还需要再等下行车5分钟,

t=30+5+10=45,不合题意;

②当x<2.5时,只能往B站乘下行车,他离Bx千米,则离他右边最近的下行车离C站也是x千米,这辆下行车离B站(5﹣x)千米,

如果能乘上右侧的第一辆下行车,则,解得:x≤

0<x≤

18≤t<20,

0<x≤符合题意;

如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,x>

,解得:x≤

,22≤t<28

符合题意;

如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,x>

,解得:x≤

<x≤,35≤t<37,不合题意,

∴综上,得0<x≤

③当x>2.5时,乘客需往C站乘坐下行车.离他左边最近的下行车离B站是(5﹣x)千米,离他右边最近的下行车离C站也是(5﹣x)千米.

如果乘上右侧第一辆下行车,则,解得:x≥5,不合题意.

x≥5,不合题意.

如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,x<5,

,解得x≥4,

4≤x<5,30<t≤32,

4≤x<5符合题意.

如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,x<4,

,解得x≥3,

3≤x<4,42<t≤44,

3≤x<4不合题意.

综上,得4≤x<5.

综上所述,0<x≤4≤x<5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△AOB,△COD是等腰直角三角形,点DAB上.

1)求证:△ACO≌△BDO

2)若∠BOD30°,求∠ACD度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=ACAB的垂直平分线交ABN,交BC的延长线于M,∠A=40°.

⑴求∠NMB的大小;

⑵若将图中的∠A的度数改为70°,其余条件不变,则∠NMB=

⑶你发现有什么样的规律?若将∠A改为钝角,对这个问题规律性的认识是否需要加以修改?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解学生参加选课走板情况,学校研究小组随机抽取若干人进行调查分析,根据收集整理的数据绘制成不完整的条形统计图和扇形统计图,课程类别代码如下:

A:文学类课程 B:益智类课程 C:艺术类课程

根据以上信息,解答下列问题:

(1)该小组采用的调查方式是   ,被调查的样本容量是   

(2)将条形统计图和扇形统计图补充完整;

(3)若全校有1280名学生,选择艺术类课程的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ACB=90°,AC=BC=10,在DCE中,∠DCE=90°,DC=EC=6,点D在线段AC上,点E在线段BC的延长线上.将DCE绕点C旋转60°得到D′CE′(点D的对应点为点D′,点E的对应点为点E′),连接AD′、BE′,过点CCNBE′,垂足为N,直线CN交线段AD′于点M,则MN的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.

(1)求抛物线的函数表达式.

(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?

(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球 B乒乓球C羽毛球 D足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

(1)这次被调查的学生共有   人;

(2)请你将条形统计图(2)补充完整;

(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,点DAC边上一点,以BD为边作等边△BDE, 连接CE.若CD1CE3,则BC_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了更好治理河流水质,保护环境,某市治污公司决定购买10台污水处理设备,现有AB两种型号的设备,其中每台的价格,月处理污水量如表:

A

B

价格(万元/台)

a

b

处理污水量(吨/月)

220

180

经调查:购买一台A型设备比购买一台B型设备多3万元,购买2A型设备比购买3B型设备少3万元.

1)求ab的值;

2)经预算:市治污公司购买污水处理设备的资金不超过100万元,你认为该公司有哪几种购买方案;

3)在(2)问的条件下,若每月要求处理的污水量不低于1880吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.

查看答案和解析>>

同步练习册答案