【题目】今年5月13日是“母亲节”,某校开展“感恩母亲,做点家务”活动为了了解同学们在母亲节这一天做家务情况,学校随机抽查了部分同学,并用得到的数据制成如下不完整的统计表:
做家务时间(小时) | 人数 | 所占百分比 |
A组:0.5 | 15 | 30% |
B组:1 | 30 | 60% |
C组:1.5 | x | 4% |
D组:2 | 3 | 6% |
合计 | y | 100 |
(1)统计表中的x= ,y= ;
(2)小君计算被抽查同学做家务时间的平均数是这样的:
第一步:计算平均数的公式是,
第二步:该问题中n=4,x1=0.5,x2=1,x3=1.5,x4=2,
第三步:=1.25(小时)
小君计算的过程正确吗?如果不正确,请你计算出正确的做家务时间的平均数;
(3)现从C,D两组中任选2人,求这2人都在D组中的概率(用树形图法或列表法).
【答案】(1)2,50;(2)被抽查同学做家务时间的平均数为0.93小时;(3)2人都在D组中的概率为
【解析】(1)利用:某组的百分比=×100%,先计算出总人数,再求x、y;
(2)利用加权平均数公式计算做家务时间的平均数;
(3)列出表格或树形图,把所有情况和在D组的情况都写出来,利用求概率的公式计算出概率.
(1)抽查的总人数为:15÷30%=50(人),
x=50×4%=2(人),
y=50×100%=50(人),
故答案为:2,50;
(2)小君的计算过程不正确,
被抽查同学做家务时间的平均数为:
=0.93(小时),
被抽查同学做家务时间的平均数为0.93小时;
(3)C组有两人,不妨设为甲、乙,D组有三人,不妨设为:A、B、C,
列出树状图如下:
共有20种情况,其中2人都在D组的按情况有:AB,AC.BA,BC,CA,CB共6种,
∴2人都在D组中的概率为:P=.
科目:初中数学 来源: 题型:
【题目】某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.
(1)求A、B型号衣服进价各是多少元?
(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为丰富少年儿童的业余文化生活,某社区要在如图所示的AB所在的直线上建一图书阅览室,该社区有两所学校,所在的位置分别在点C和点D处。CA⊥AB于A,DB⊥AB于B,已知AB=25km,CA=15km,DB=10km,试问:阅览室E建在距A点多远时,才能使它到C、D两所学校的距离相等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )
A. 抛一枚硬币,出现正面朝上
B. 掷一个正六面体的骰子,出现3点朝上
C. 一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃
D. 从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是( )
A. 6<t≤8 B. 6≤t≤8 C. 10<t≤12 D. 10≤t≤12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:若a+b=2,则称a与b是关于1的平衡数.
(1)直接填写:①3与_ 是关于1的平衡数: :
②1-x与________是关于 1的平衡数(用含x的代数式表示);
(2)若,,先化简a. b,再判断a与b是否是关于1的平衡数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,这是网上盛传的一个关于数学的诡辩问题截图,表1是它的示意表.我们一起来解答“为什么多出了元”.
表1
花去 | 剩余 | |
买牛肉 | 元 | 元 |
买猪脚 | 元 | 元 |
买蔬菜 | 元 | 元 |
买调料 | 元 | 元 |
总计 | 元 | 元 |
(1)为了解释“剩余金额总计”与“我手里有元”无关,按要求填写表2中的空格.
表2
花去 | 剩余 | |
买牛肉 | 元 | 元 |
买猪脚 | 元 | 元 |
买蔬菜 | 元 | 元 |
买调料 | 元 | 元 |
总计 | 元 | 元 |
表3
花去 | 剩余 | |
买物品1 | 元 | 元 |
买物品2 | 元 | 元 |
买物品3 | 元 | 元 |
买物品4 | 元 | 元 |
总计 | 元 | 元 |
(2)如表3中,直接写出以下各代数式的值:
① ;② ;③ ;④ ;
(3)如表3中,都是正整数,则的最大值等于 ;最小值等于 .由此可以知道“为什么多出了元”只是一个诡辩而已.
(4)我们将“花去”记为“”,“剩余”记为“”,请在表4中将表1数据重新成号.
花去 | 剩余 | |
买牛肉 | 元 | 元 |
买猪脚 | 元 | 元 |
买蔬菜 | 元 | 元 |
买调料 | 元 | 元 |
总计 | 元 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.
(1)AE与FC会平行吗?说明理由.
(2)AD与BC的位置关系如何?为什么?
(3)求证:BC平分∠DBE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、B、C在数轴上表示的数分别为a、b、c,且OA+OB=OC,则下列结论中:
①abc<0;②a(b+c)>0;③a﹣c=b;④ .
其中正确的个数有 ( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com