【题目】如图,中,, 点在线段的延长线上, 连接AD,CD=1,BC=12,∠DAB=30°, 则__________.
【答案】4
【解析】
过点B作BE⊥AD于点E,AH⊥BC于H.设AB=AC=x.根据AE+DE=AD,分别利用勾股定理求出AE,DE,AD,构建方程即可解决问题.
解:过点B作BE⊥AD于点E,AH⊥BC于H.设AB=AC=x.
在Rt△ABE中,
∵∠BAE=30°,AB=x,
∴BE=AB=x,AE=BE= x,
∵AB=AC,AH⊥BC,
∴CH=BH=6,
在Rt△AHB中,AH2=x2-62,
在Rt△DBE中,DE=,
在Rt△ADH中,AD=.
∵AE+DE=AD,
∴,
整理得:x4-13×51x-(12×13)2=0,
解得x2=13×48或13×3(舍去),
∵x>0,
∴x=4,
经检验:x=4是无理方程的解,
∴AC=4,
故答案为4.
科目:初中数学 来源: 题型:
【题目】实践操作
如图,是直角三角形,,利用直尺和圆规按下列要求作图,并在图中表明相应的字母.(保留作图痕迹,不写作法)
(1)①作的平分线,交于点;②以为圆心,为半径作圆.
综合运用
在你所作的图中,
(2)与⊙的位置关系是 ;(直接写出答案)
(3)若,,求⊙的半径.
(4)在(3)的条件下,求以为轴把△ABC旋转一周得到的圆锥的侧面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在同一直角坐标系中,二次函数y=x2-2x-3的图象与两坐标轴分别交于点A点 B和点C,一次函数的图象与抛物线交于B、C两点.
(1)将这个二次函数化为的形式为 。
(2)当自变量满足 时,两函数的函数值都随增大而增大。
(3)当自变量满足 时,一次函数值大于二次函数值。
(4)当自变量满足 时,两个函数的函数值的积小于0。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2+4x+c(a≠0)经过点A(3,﹣4)和B(0,2).
(1)求抛物线的表达式和顶点坐标;
(2)将抛物线在A、B之间的部分记为图象M(含A、B两点).将图象M沿直线x=3翻折,得到图象N.若过点C(9,4)的直线y=kx+b与图象M、图象N都相交,且只有两个交点,求b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程mx2+(3m+1)x+3=0.
(1)求证:该方程有两个实数根;
(2)如果抛物线y=mx2+(3m+1)x+3与x轴交于A、B两个整数点(点A在点B左侧),且m为正整数,求此抛物线的表达式;
(3)在(2)的条件下,抛物线y=mx2+(3m+1)x+3与y轴交于点C,点B关于y轴的对称点为D,设此抛物线在﹣3≤x≤﹣之间的部分为图象G,如果图象G向右平移n(n>0)个单位长度后与直线CD有公共点,求n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与轴交于点和点与轴交于点,过点的直线交抛物线的另一个点为点,点的横坐标为.
求和的值.
点在直线下方的抛物线上任一点,点的横坐标为过点作轴,交于点设求出与的函数关系式,并直接写出的取值范围.
在问的条件下,过点作,垂足为点,连接,若把分 成面积比为的两个三角形,求出此时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,函数图象上点的横坐标与其纵坐标的和称为点的“坐标和”,而图象上所有点的“坐标和”中的最小值称为图象的“智慧数”.如图:抛物线上有一点,则点的“坐标和”为6,当时,该抛物线的“智慧数”为0.
(1)点在函数的图象上,点的“坐标和”是 ;
(2)求直线的“智慧数”;
(3)若抛物线的顶点横、纵坐标的和是2,求该抛物线的“智慧数”;
(4)设抛物线顶点的横坐标为,且该抛物线的顶点在一次函数的图象上;当时,抛物线的“智慧数”是2,求该抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线(m,n 为常数).
(1)若抛物线的的对称轴为直线 x=1,且经过点(0,-1),求 m,n 的值;
(2)若抛物线上始终存在不重合的两点关于原点对称,求 n 的取值范围;
(3)在(1)的条件下,存在正实数 a,b( a<b),当 a≤x≤b 时,恰好有,请直接写出 a,b 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(0,4)、B(﹣3,0),将线段AB沿x轴正方向平移n个单位得到菱形ABCD.
(1)画出菱形ABCD,并直接写出n的值及点D的坐标;
(2)已知反比例函数y=的图象经过点D,ABMN的顶点M在y轴上,N在y=的图象上,求点M的坐标;
(3)若点A、C、D到某直线l的距离都相等,直接写出满足条件的直线解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com