精英家教网 > 初中数学 > 题目详情

【题目】某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:

请根据上面的信息,解决问题:
(1)设AB=x米(x>0),试用含x的代数式表示BC的长;
(2)请你判断谁的说法正确,为什么?

【答案】
(1)解:设AB=x米,可得BC=69+3﹣2x=72﹣2x
(2)解:小英说法正确;

矩形面积S=x(72﹣2x)=﹣2(x﹣18)2+648,

∵72﹣2x>0,

∴x<36,

∴0<x<36,

∴当x=18时,S取最大值,

此时x≠72﹣2x,

∴面积最大的不是正方形


【解析】(1)设AB=x米,根据等式x+x+BC=69+3,可以求出BC的表达式;(2)得出面积关系式,根据所求关系式进行判断即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是(
A.k<5
B.k<5,且k≠1
C.k≤5,且k≠1
D.k>5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有正方形ABCD,把△ADE顺时针旋转到△ABF的位置.其中AD=4,AE=5,则BF=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).

(1)求抛物线的函数表达式;
(2)若点P在抛物线上,且SAOP=4SBOC , 求点P的坐标;
(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上,点P的坐标为(﹣1,0),请按要求画图与作答:

(1)把△ABC绕点P旋转180°得△A′B′C.
(2)把△ABC向右平移7个单位得△A″B″C″.
(3)△A′B′C与△A″B″C″是否成中心对称,若是,找出对称中心P′,并写出其坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数的图象经过点A(-1,-2).则当x>1时,函数值y的取值范围是( )

A.y>1
B.0<y<1
C.y>2
D.0< y<2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数 ,当 时,y有最小值1,则a=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.
(1)如图2,当PD∥AB时,求PD的长;
(2)如图3,当 = 时,延长AB至点E,使BE= AB,连接DE. ①求证:DE是⊙O的切线;
②求PC的长.

查看答案和解析>>

同步练习册答案