2-2:在三角形ABC中,若AB=4,BC=5,AC=4,则三角形ABC是 三角形。
科目:初中数学 来源: 题型:
如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.
(1) 试判断BE与FH的数量关系,并说明理由;
(2) 求证:∠ACF=90°;
(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求
的长.
![]()
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
某五金店购进一批数量足够多的p型节能电灯 进价为35元/只,以50元/只销售,每天销售20只.市场调研发现:若每只每降l元,则每天销售数量比原来多3只.现商店决定对Q型节能电灯进行降价促销活动,每只降价x元(x为正整数).在促销期间,商店要想每天获得最大销售利润,每只应降价多少元?每天最大销售毛利润为多少?(注:每只节能灯的销售毛利润指每只节能灯的销售价与进货价的差)
查看答案和解析>>
科目:初中数学 来源: 题型:
如图(1),抛物线
(
)与x轴交于A、B两点,与y轴交于点C,直线AC的解析式为
,抛物线的对称轴与
轴交于点E,点D(-2,-3)在对称轴上.
![]()
(1)求此抛物线的解析式;
(2)如图(1),若点M是线段OE上一点(点M不与点O、E重合),过点M作MN⊥x轴,交抛物线于点N,记点N关于抛物线对称轴的对称点为点F,点P是线段MN上一点,且满足MN=4MP,连接FN、FP,作QP⊥PF交x轴于点Q,且满足PF=PQ,求点Q的坐标;
(3)如图(2),过点B作BK⊥x轴交直线AC于点K,连接DK、AD,点H是DK的中点,点G是线段AK上任意一点,将△DGH沿GH边翻折得△DGH,求当KG为何值时,△DGH与△KGH重叠部分的面积是△DGK面积的
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com