精英家教网 > 初中数学 > 题目详情
19.已知y=ax2+k的图象上有三点A(-3,y1),B(1,y2),C(2,y3),且y2<y3<y1,则a的取值范围是(  )
A.a>0B.a<0C.a≥0D.a≤0

分析 先根据二次函数图象上点的坐标特征可计算出y1=9a+k,y2=a+k,y3=4a+k,再利用y2<y3<y1得a+k<4a+k<9a+k,然后解不等式即可得到a的取值范围.

解答 解:∵点A(-3,y1),B(1,y2),C(2,y3)在抛物线y=ax2+k上,
∴y1=a•(-3)2+k=9a+k,y2=a•12+k=a+k,y3=a•22+k=4a+k,
∵y2<y3<y1
∴a+k<4a+k<9a+k,
∴a>0.
故选A.

点评 本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.计算::${(\frac{1}{2})^{-2}}+\sqrt{18}-2sin45°+{(π-3.14)^0}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.现有1元和5元的两种纸币共计28元.
(1)若两种纸币共8张,则1元纸币有几张?
(2)若两种纸币不少于10张,则5元纸币最多有几张?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.计算(a+2)2(a2+4)2(a-2)2的结果是(  )
A.a8-64B.a8-256C.a8-16a4+64D.a8-32a4+256

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在Rt△ABC中,已知∠ACB=90°,BC=2$\sqrt{3}$,CD⊥AB,垂足为点D,CD,CE三等分∠ACB,求△ACE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列各组条件,不能判定△ABC与△A′B′C′相似的是(  )
A.∠A=∠A′∠B=∠B′B.∠C=∠C′=90°,∠A=12°,∠B=78°
C.∠A=∠B,∠B′=∠A′D.∠A+∠B=∠A′+∠B′,∠A-∠B=∠A′-∠B′

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在△ABC中,DE是AC的垂直平分线,分别交AB、AC于D、E两点.
(1)求证:△ACD是等腰三角形;
(2)若AE=5,△CBD的周长为24,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.因为(-2)×7=-14,所以(-14)÷7=(-2),这说明除法是乘法的逆运算.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.若实数a、b、c满足$\sqrt{b-2a+3}+|a+b-2|$=$\sqrt{c-2}+\sqrt{2-c}$,则$\sqrt{{a}^{2}+{b}^{2}+{c}^{2}}$的值为$\frac{\sqrt{182}}{3}$.

查看答案和解析>>

同步练习册答案