精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠ACB=90°,BC=9,AC=12.分别以点A和点B为圆心、大于AB一半的长为半径作圆弧,两弧相交于点E和点F,作直线EF交AB于点D,连结CD.则CD的长为

【答案】
【解析】解:由作图可知,EF垂直平分AB,即DC是直角三角形ABC斜边上的中线,

故DC= AB= = ×15=

所以答案是:

【考点精析】本题主要考查了线段垂直平分线的性质和直角三角形斜边上的中线的相关知识点,需要掌握垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;直角三角形斜边上的中线等于斜边的一半才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,反比例函数y=x0)的图象经过矩形OABC的对角线AC的中点M,分别与ABBC交于点DE,若BD=3OA=4,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,对角线AC、BD相交于点O,AB=5,AC=6,过点D作AC的平行线交BC的延长线于点E,则△BDE的面积为( )

A.22
B.24
C.48
D.44

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在三角形ABC, B=60°, C=,点DAB上一点,EAC上一点, ADE=60°, F为线段BC上一点,连接EF,过DDG//ACEF于点G

(1)=40°,求∠EDG的度数;

(2)若∠FEC=2DEF,∠DGF=BFG,求.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小强家有一块三角形菜地,量得两边长分别为,第三边上的高为.请你帮小强计算这块菜地的面积.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC在直角坐标系中。

(1)请写出ABC各点的坐标;

(2)求出ABC的面积SABC

(3)若把ABC向上平移2个单位,再向右平移2个单位得A1B1C1,在图中画出A1B1C1,并写出A1B1C1的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点为等边三角形内一点,连接,以为一边作,且,连接.

(1)判断的大小关系并证明;

(2)若,判断的形状并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.
例:如图①,在△ABC中,D为边BC的中点,AE⊥BC于E,则线段DE的长叫做边BC的中垂距.

(1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是 , 推断的数学依据是
(2)如图②,在△ABC中,∠B=45°,AB= ,BC=8,AD为边BC的中线,求边BC的中垂距.

(3)如图③,在矩形ABCD中,AB=6,AD=4.点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC.求△ACF中边AF的中垂距.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点AB的坐标分别为(20)(60),现同时将点AB分别向上平移4个单位,再向右平移2个单位,分别得到点AB的对应点CD,连接ACBD

(1)求点CD的坐标及四边形ABDC的面积S四边形ABDC

(2)y轴上是否存在一点P,连接PAPB,使SPAB=S四边形ABDC,若存在这样一点,求出点P的坐标,若不存在,试说明理由.

(3)P是线段BD上的一个动点,连接PCPO,当点PBD上移动时(不与BD重合)给出下列结论:①的值不变;的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.

查看答案和解析>>

同步练习册答案