精英家教网 > 初中数学 > 题目详情

【题目】如图,P为等边三角形ABC内的一点,且P到三个顶点ABC的距离分别为3,4,5,则ABC的面积为(  )

A. B. C. D.

【答案】A

【解析】△BPC绕点B逆时针旋转60°△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点F.AP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AFPF的长,则在直角△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.

∵△ABC为等边三角形,

∴BA=BC,

可将△BPC绕点B逆时针旋转60°△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,

∴BE=BP=4,AE=PC=5,∠PBE=60°,

∴△BPE为等边三角形,

∴PE=PB=4,∠BPE=60°,

△AEP中,AE=5,AP=3,PE=4,

∴AE2=PE2+PA2

∴△APE为直角三角形,且∠APE=90°,

∴∠APB=90°+60°=150°.

∴∠APF=30°,

在直角△APF中,AF=AP=,PF=AP=

在直角△ABF中,AB2=BF2+AF2=(4+2+(2=25+12

△ABC的面积是AB2=(25+12)=9+

故选:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°,sin∠BAC= ,点D是AC上一点,且BC=BD=2,将Rt△ABC绕点C旋转到Rt△FEC的位置,并使点E在射线BD上,连接AF交射线BD于点G,则AG的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A(4,1),B(5,4),将线段AB绕点A逆时针旋转90°得线段AC,则点C的坐标为( )

A.(1,2)
B.(2,1)
C.(7,0)
D.(1,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于一组数据﹣1,﹣1,4,2,下列结论不正确的是( )
A.平均数是1
B.众数是﹣1
C.中位数是0.5
D.方差是3.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,E在直线AB,CD之间.

1)求证:∠AEC=BAE+ECD;

2)若AH平分∠BAE,将线段CE沿射线CD平移至FG.

①如图2,若∠AEC=90°FH平分∠DFG,求∠AHF的度数;

②如图3,若FH平分∠CFG,试判断∠AHF与∠AEC的数量关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,且AB=2cm,点P为弧AB上一动点(不与A,B重合), = ,过点D作⊙O的切线交PB的延长线于点C.
(1)试证明AB∥CD;
(2)填空: ①当BP=1cm时,PD=cm;
②当BP=cm时,四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有12次3分球未投中.
(1)该运动员去年的比赛中共投中多少个3分球?
(2)在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了丰富学生的大课间活动,准备购进一批跳绳,已知2根短绳和1根长绳共需56元,1根短绳和2根长绳共需82元.

1)求每根短绳和每根长绳的售价各是多少元?

2)学校准备购进这两种跳绳共50根,并且短绳的数量不超过长绳数量的2倍,总费用不超过1020元,请设计出最省钱的购买方案,并说明理由.

查看答案和解析>>

同步练习册答案