精英家教网 > 初中数学 > 题目详情

【题目】为响应香洲区全面推进书香校园建设的号召,班长小青随机调查了若干同学一周课外阅读的时间t(单位:小时),将获得的数据分成四组,绘制了如下统计图(A:0t7,B:7t14,C:14t21,D:t21),根据图中信息,解答下列问题:

(1)这项工作中被调查的总人数是多少?

(2)补全条形统计图,并求出表示A组的扇形统计图的圆心角的度数;

(3)如果小青想从D组的甲、乙、丙、丁四人中先后随机选择两人做读书心得发言代表,请用列表或树状图的方法求出恰好选中甲的概率.

【答案】(1)50人;(2)补全图形见解析,表示A组的扇形统计图的圆心角的度数为108°;(3).

【解析】分析:(1)、根据B的人数和百分比得出样本容量;(2)、根据总人数求出C组的人数,根据A组的人数占总人数的百分比得出扇形的圆心角度数;(3)、根据题意列出树状图,从而得出概率.

详解:(1)被调查的总人数为19÷38%=50人;

(2)C组的人数为50﹣(15+19+4)=12(人),

补全图形如下:

表示A组的扇形统计图的圆心角的度数为360°×=108°;

(3)画树状图如下,

共有12个可能的结果,恰好选中甲的结果有6个, ∴P(恰好选中甲)=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了你对哪类在线学习方式最感兴趣的调查,并根据调查结果绘制成如下两幅不完整的统计图.

1)求本次调查的学生总人数,并补全条形统计图;

2)求扇形统计图中在线讨论对应的扇形圆心角的度数;

3)该校共有学生3000人,请你估计该校对在线阅读最感兴趣的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若抛物线L1:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线L2都经过y轴上的一点P,且抛物线L1与顶点Q在直线L2上,则称此直线L2与该抛物线L1具有“一带一路”关系,此时,直线L2叫做抛物线L1的“带线”,抛物线L1叫做直L2的“路线”.

(1) 若直线y=mx+1与抛物线y=x2-2x+n具有“一带一路”关系,则m+n=_______.

(2) 若某“路线”L1的顶点在反比例函数的图像上,它的“带线” L2的解析式为y=2x-4,则此“路线”L的解析式为:_____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据材料,解答问题

如图,数轴上有点,对应的数分别是6-44-1,则两点间的距离为两点间的距离为两点间的距离为;由此,若数轴上任意两点分别表示的数是,则两点间的距离可表示为反之,表示有理数在数轴上的对应点之间的距离,称之为绝对值的几何意义

问题应用1

1)如果表示-1的点和表示的点之间的距离是2,则点对应的的值为___________

2)方程的解____________

3)方程的解______________

问题应用2

如图,若数轴上表示的点为.

4的几何意义是数轴上_____________,当__________的值最小是____________

5的几何意义是数轴上_______的最小值是__________,此时点在数轴上应位于__________上;

6)根据以上推理方法可求的最小值是___________,此时__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在桌面上,有若干个完全相同的小正方体堆成的一个几何体,如图所示.

(1)请画出这个几何体的三视图.

(2)若将此几何体的表面喷上红漆(放在桌面上的一面不喷),则三个面上是红色的小正方体有 个.

(3)若现在你的手头还有一些相同的小正方体可添放在几何体,要保持主视图和左视图不变,则最多可以添加___个小正方体.

(4)若另一个几何体与几何体的主视图和左视图相同,而小正方体个数则比几何体1,请在图2中画出几何体的俯视图中的任意两种.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠BAC90°ADCD,点E是边AC的中点,连接DEDE的延长线与边BC相交于点FAGBC,交DE于点G,连接AFCG.

(1)求证:AFBF

(2)如果ABAC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,AD=4,AB=2,将矩形ABCD绕点A逆时针旋转α(0α90°)得到矩形AEFG.延长CBEF交于点H.

(1)求证:BH=EH;

(2)如图2,当点G落在线段BC上时,求点B经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某月的月历,图中带阴影的方框恰好盖住四个数,不改变带阴影的方框的形状大小,移动方框的位置.

(1)若带阴影的方框盖住的4个数中,A表示的数是x,求这4个数的和(用含x的代数式表示)

(2)若带阴影的方框盖住的4个数之和为82,求出A表示的数;

(3)4个数之和可能为38112吗?如果可能,请求出这4个数,如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,直线ABx轴、y轴相交于两点,动点C在线段OA上(不与OA重合),将线段CB绕着点C顺时针旋转得到CD,当点D恰好落在直线AB上时,过点D轴于点E.

1)求证,

2)如图2,将沿x轴正方向平移得,当直线经过点D时,求点D的坐标及平移的距离;

3)若点Py轴上,点Q在直线AB上,是否存在以CDPQ为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案