【题目】某班“数学兴趣小组”对函数的图象和性质进行了探究,过程如下,请补充完整.
(1)自变量的取值范围是全体实数,与的几组对应值列表如下:
… | 0 | 1 | 2 | 3 | 4 | 5 | … | ||||
… | 4 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | … |
其中,__________.
(2)根据上表的数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)观察图象,写出该函数的两条性质:
①____________________________________________________________
②____________________________________________________________
(4)进一步探究函数图象发现:
①方程的解是__________.
②方程的解是__________.
③关于的方程有两个不相等实数根,则的取值范围是__________.
【答案】(1)3;(2)见解析;(3)①函数值y≥0函数值y≥0;②当x>1时,y随x的增大而增大;(4)①;②或;③.
【解析】
(1)求出x=-2时的函数值即可;
(2)利用描点法画出函数图象即可;
(3)结合图象写出两个性质即可;
(4)分别求出方程的解即可解决问题;
解:(1)x=-2时,y=|x-1|=3,故m=3,故答案为3.
(2)函数图象如图所示:
(3)①函数值y≥0,②当x>1时,y随x的增大而增大;
故答案为函数值y≥0;当x>1时,y随x的增大而增大;
(4)①方程|x-1|=0的解是x=1
②方程|x-1|=1.5的解是x=2.5或-0.5
③关于x的方程|x-1|=a有两个实数根,则a的取值范围是a>0,
故答案为x=1,x=2.5或-0.5,a>0.
科目:初中数学 来源: 题型:
【题目】在正常情况下,某出租车司机每天驾车行驶小时,且平均速度为千米时。已知他在A日比正常情况少行驶2小时,平均速度比正常情况慢5千米/时,他在B日比正常情况多行驶2小时,平均速度比正常情况快5千米/时,
(1)问A日出租车司机比正常情况少行驶多少千米?(用含,的代数式表示)
(2)已知A日出租车司机比正常情况少行驶120千米,求B日出租车司机比正常情况多行驶多少千米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】网络视频的兴起让重庆一度成为“网红”城市,并且使得到山城重庆的游客剧增.某旅游公司根据游客的需求推出了“快速游”和“精品游”两种套餐.9月份,该旅游公司“快速游”.“精品游”两种套餐的价格分别为800元/人.2000元/人,其中“快速游”套餐的游客人数比“精品游”套餐的游客人数的2倍多300人,总收入是240万元.
(1)求9月份该旅游公司“快速游”套餐的游客人数;
(2)该公司为了接纳更多的游客,提升口碑,10月份“快速游”套餐价格比9月份下降了,10月份“精品游”套餐价格比9月份下降了.已知10月份该公司两种套餐的游客人数的和达到4000人,其中“精品游”套餐的游客人数占两种套餐的游客人数的和的,且10月份总收入达到了457.6万元,求a的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是( )
30 |
| 2sin60° | 22 |
﹣3 | ﹣2 | ﹣sin45° | 0 |
|﹣5| | 6 | 23 | |
()﹣1 | 4 |
| ()﹣1 |
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.
性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.
理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.
应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.
(1)求证:△AOB和△AOE是“友好三角形”;
(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.
探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向,点B的北偏东30°方向上,AB=2km,∠DAC=15°.
(1)求B,D之间的距离;
(2)求C,D之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作⊙O的切线DF,交AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com