【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).
(1)求抛物线的解析式;
(2)若点D为该抛物线上的一个动点,且在直线AC上方,当以A、C、D为顶点的三角形面积最大时,求点D的坐标及此时三角形的面积;
(3)以AB为直径作⊙M,直线经过点E(﹣1,﹣5),并且与⊙M相切,求该直线的解析式.
【答案】(1)y=﹣x2﹣x+2;(2)2,D的坐标为(﹣2,2);(3)y=x﹣或y=﹣x﹣.
【解析】试题分析:
(1)由已知条件可设抛物线解析式为: ,再代入点C的坐标(0,2)解得的值即可得到抛物线的解析式;
(2)如图2,过点D作DH⊥AB于H,交直线AC于点G,由A、C的坐标求出直线AC的解析式,设点D的横坐标为“m”,则可用含“m”的代数式表达出DG的长,结合S△ADC=DG×OA即可用“m”的式子表达出其面积,配方即可得到当“m”为何值时,面积最大,并得到面积的最大值;
(3)如图3,设过点E的直线与⊙M相切于点F,与x轴交于点N,连接MF,则有MF⊥EN,由已知条件易得:⊙M的半径为3,点M的坐标为:(﹣1,0),ME=5,在Rt△MFE中可求得EF=4;再证△MEF∽△NEM,由两三角形对应边成比例可求得MN=,从而可求得点N的坐标为( ,0)或(,0),结合点E的坐标即可求得直线NE的解析式.
试题解析:
(1)抛物线与轴交于A(﹣4,0),B(2,0),
∴可设,
又∵抛物线过点C(0,2),
∴,解得: ,
∴抛物线的解析式为: ;
(2)过点D作DH⊥AB于H,交直线AC于点G,如图2.
设直线AC的解析式为,由已知可得: ,
解得: ,
∴直线AC的解析式为.
设点D的横坐标为m,则点G的横坐标也为m,
∴DH=,GH=,
∴DG=DH-GH= ,
∴S△ADC=DG·OA
=
=
=,
∵点D在直线AC上方的抛物线上,
∴,
∴当m=﹣2时,S△ADC取到最大值2.
此时yD=,
∴点D的坐标为(﹣2,2);
(3)设过点E的直线与⊙M相切于点F,与x轴交于点N,连接MF,如图3,
则有MF⊥EN.
∵A(﹣4,0),B(2,0),
∴AB=6,MF=MB=MA=3,
∴点M的坐标为:(﹣1,0).
∵E(﹣1,﹣5),
∴ME=5,∠EMN=90°.
∴在Rt△MFE中,EF=.
∵∠MEF=∠NEM,∠MFE=∠EMN=90°,
∴△MEF∽△NEM,
∴,即: ,
解得:NM=,
∴点N的坐标为(,0)即( ,0)或(,0)即(,0).
设直线EN的解析式为y=px+q.
①当点N的坐标为( ,0)时,由题意可得: ,
解得: ,
∴直线EN的解析式为.
②当点N的坐标为(,0)时,
同理可得:直线EN的解析式为: .
综上所述:所求直线的解析式为: 或.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图象与x轴交于点A,与y轴交于点B.
(1)求A、B两点的坐标.
(2)求△AOB的面积.
(3)若点C在直线AB上,且S△BOC=2,求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.
问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,E是AD的中点,延长CB到点F,使,连接BE、AF.
(1)完成画图并证明四边形AFBE是平行四边形;
(2)若AB=6,AD=8,∠C=60°,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的袋子中装有 4 个红球和 6 个黄球,这些球除颜色外都相同,将袋子中的球充 分摇匀后,随机摸出一球.
(1)分别求摸出红球和摸出黄球的概率
(2)为了使摸出两种球的概率相同,再放进去 8 个同样的红球或黄球,那么这 8 个球中红球和 黄球的数量分别是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一棵树高h(m)与生长时间n(年)之间有一定关系,请你根据下表中数据,写出h(m)与n(年)之间的关系式:_____.
n/年 | 2 | 4 | 6 | 8 | … |
h/m | 2.6 | 3.2 | 3.8 | 4.4 | … |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是甲、乙两人从同一地点出发后,路程随时间变化的图象.
(1)此变化过程中,___________ 是自变量,___________ 是因变量.
(2)甲的速度 ___________ 乙的速度.(填“大于”、“等于”、或“小于”)
(3)甲与乙 ___________ 时相遇.
(4)甲比乙先走 ___________ 小时.
(5)9时甲在乙的 ___________ (填“前面”、“后面”、“相同位置”).
(6)路程为150km,甲行驶了___________ 小时,乙行驶了___________ 小时.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,6),B(3,n)两点.
(1)求反比例函数和一次函数的表达式;
(2)根据图象写出不等式kx+b﹣>0的解集;
(3)若点M在x轴上、点N在y轴上,且以M、N、A、B为顶点的四边形是平行四边形,请直接写出点M、N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我省某地区为了了解2016年初中毕业生毕业去向,对部分九年级学生进行了抽样调查,就九年级学生毕业后的四种去向:A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其他(如出国等)进行数据统计,并绘制了两幅不完整的统计图(如图1,如图2)
(1)填空:该地区共调查了 名九年级学生;
(2)将两幅统计图中不完整的部分补充完整;
(3)若该地区2016年初中毕业生共有3500人,请估计该地区今年初中毕业生中读普通高中的学生人数;
(4)老师想从甲,乙,丙,丁4位同学中随机选择两位同学了解他们毕业后的去向情况,请用画树状图或列表的方法求选中甲同学的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com