精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形OABC中,BCAO,AOC=90°,A,B的坐标分别为(5,0),(2,6),点DAB上一点,且,双曲线y=(k>0)经过点D,交BC于点E

(1)求双曲线的解析式;

(2)求四边形ODBE的面积.

【答案】(1)y= (2)12

【解析】分析:(1)作BM⊥x轴于M,作DN⊥x轴于N,利用点A,B的坐标得到BC=OM=2,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA-AN=4,得到D点坐标为(4,2),然后把D点坐标代入y=中求出k的值即可得到反比例函数解析式;

(2)根据反比例函数k的几何意义和S四边形ODBE=S梯形OABC-SOCE-SOAD进行计算.

详解:(1)作BMx轴于M,作DNx轴于N,如图,

∵点A,B的坐标分别为(5,0),(2,6),

BC=OM=2,BM=OC=6,AM=3,

DNBM,

∴△ADN∽△ABM,

,即

DN=2,AN=1,

ON=OA﹣AN=4,

D点坐标为(4,2),

D(4,2)代入y=k=2×4=8,

∴反比例函数解析式为y=

(2)S四边形ODBE=S梯形OABC﹣SOCE﹣SOAD

=×(2+5)×6﹣×|8|﹣×5×2

=12.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知在同一直线上,则的度数为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是(  )

A. (2010,2) B. (2010,﹣2) C. (2012,﹣2) D. (0,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图,过y轴上任意一点p,作x轴的平行线,分别与反比例函数y=和y=的图象交于A点和B点若C为x轴上任意一点,连接AC、BC,则ABC的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,双曲线和直线y=kx+b交于AB两点,点A的坐标为(﹣32),BCy轴于点C,且OC=6BC

1)求双曲线和直线的解析式;

2)直接写出不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的直径,弦CDABH,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AGCDK

1)如图1,求证:KE=GE

2)如图2,连接CABG,若∠FGB=ACH,求证:CAFE

3)如图3,在(2)的条件下,连接CGAB于点N,若sinE=AK=,求CN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,点A(2,0),B(6,2),C(6,6),反比例函数y1=(x>0)的图象过点D,点P是一次函数y2=kx+3﹣3k(k≠0)的图象与该反比例函数的一个公共点,对于下面四个结论:

①反比例函数的解析式是y1=

②一次函数y2=kx+3﹣3k(k≠0)的图象一定经过(6,6)点;

③若一次函数y2=kx+3﹣3k的图象经过点C,当x>2时,y1<y2

④对于一次函数y2=kx+3﹣3k(k≠0),当yx的增大而增大时,点P横坐标a的取值范围是0<a<3.

其中正确的是(  )

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了解七年级学生足球运球的掌握情况,随机抽取部分七年级学生足球运球的测试成绩作为一个样本,接四个等级进行统计,制成了如下不完整的统计图.

根据所给信息,解答以下问题:

1)求一共抽取了多少名七年级学生的测试成绩?

2)扇形统计图中对应的扇形圆心角为     度(直接填空):

3)直接在图中补全条形统计图.

查看答案和解析>>

同步练习册答案