【题目】如图①,B,C,E是同一直线上的三个点, 四边形ABCD与四边形CEFG都是正方形.连接BG,DE.
(1)探究BG与DE之间的数量关系, 并证明你的结论;
(2)当正方形CEFG绕点C在平面内顺时针转动到如图②所示的位置时,线段BG和ED有何关系? 写出结论并证明.
【答案】(1)见解析;(2)见解析.
【解析】
(1)猜想BG⊥BD,且BG=DE,延长BG与DE交于H点,用SAS证明△BCG≌△DCE,得出BG=DE,∠CBG=∠CDE,再证明∠DHG=90°,即可得出结论;
(2)用SAS证明△BCG≌△DCE,得出BG=DE,∠CBG=∠CDE,再根据对顶角相等和直角三角形两锐角互余,通过等量代换即可得出结论.
(1)猜想:BG⊥BD,且BG=DE.证明如下:
延长BG与DE交于H点.
∵ABCD和CEFG都是正方形,
∴BC=DC,GC=EC,∠BCG=∠DCE=90°.
在△BCG和△DCE中,∵BC=DC,∠BCG=∠DCE=90°,GC=EC,
∴△BCG≌△DCE,
∴∠BGC=∠DEC,BG=DE.
又∵∠BGC=∠DGH,∠DEC+∠CDE=90°,
∴∠DGH+∠GDH=90°,
∴∠DHG=90°,
故BG⊥DE,且BG=DE.
(2)BG=DE,BG⊥DE.证明如下:
∵四边形ABCD、CEFG都是正方形,
∴BC=CD,CG=CE,∠BCD=∠ECG,
∴∠BCG=∠DCE,
∴△BCG≌△DCE(SAS),
∴BG=DE,∠CBG=∠CDE.
又∵∠BPC=∠DPO,∠CBG+∠BPC=90°,
∴∠CDE+∠DPO=90°,
∴∠DOP=90°,
∴BG⊥DE,
∴BG=DE,BG⊥DE.
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,∠DCE=120°,当∠DCE的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.
(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系,并说明理由;
(2)由(图1)的位置将∠DCE绕点C逆时针旋转θ角(0<θ<90°),线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂设计了一款成本为20元件的工艺品投放市场进行试销,经过调查,得到如下数据:
销售单价x(元件) | … | 30 | 40 | 50 | 60 | … |
每天销售量y(件) | … | 500 | 400 | 300 | 200 | … |
(1)研究发现,每天销售量y与单价x满足一次函数关系,求出y与x的关系式;
(2)当地物价部门规定,该工艺品销售单价最高不能超过50元件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是“用三角板画圆的切线”的画图过程.
如图1,已知圆上一点A,画过A点的圆的切线.
画法:(1)如图2,将三角板的直角顶点放在圆上任一点C(与点A不重合)处,使其一直角边经过点A,另一条直角边与圆交于B点,连接AB;
(2)如图3,将三角板的直角顶点与点A重合,使一条直角边经过点B,画出另一条直角边所在的直线AD.
所以直线AD就是过点A的圆的切线.
请回答:该画图的依据是_______________________________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线的图象与x轴交于,B两点,与y轴交于点,对称轴与x轴交于点H.
(1)求抛物线的函数表达式
(2)直线与y轴交于点E,与抛物线交于点P,Q(点P在y轴左侧,点Q 在y轴右侧),连接CP,CQ,若的面积为,求点P,Q的坐标.
(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G逆时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com