精英家教网 > 初中数学 > 题目详情

【题目】如图①,BCE是同一直线上的三个点, 四边形ABCD与四边形CEFG都是正方形.连接BGDE.

(1)探究BGDE之间的数量关系, 并证明你的结论;

(2)当正方形CEFG绕点C在平面内顺时针转动到如图②所示的位置时,线段BGED有何关系? 写出结论并证明.

【答案】1)见解析;(2)见解析.

【解析】

1)猜想BGBD,且BG=DE,延长BGDE交于H点,用SAS证明△BCG≌△DCE,得出BG=DE,∠CBG=CDE,再证明∠DHG=90°,即可得出结论;

2)用SAS证明△BCG≌△DCE,得出BG=DE,∠CBG=CDE,再根据对顶角相等和直角三角形两锐角互余,通过等量代换即可得出结论.

1)猜想:BGBD,且BG=DE.证明如下:

延长BGDE交于H点.

ABCDCEFG都是正方形,

BC=DCGC=EC,∠BCG=DCE=90°.

在△BCG和△DCE中,∵BC=DC,∠BCG=DCE=90°,GC=EC

∴△BCG≌△DCE

∴∠BGC=DECBG=DE

又∵∠BGC=DGH,∠DEC+CDE=90°,

∴∠DGH+GDH=90°,

∴∠DHG=90°,

BGDE,且BG=DE

2BG=DEBGDE.证明如下:

∵四边形ABCDCEFG都是正方形,

BC=CDCG=CE,∠BCD=ECG

∴∠BCG=DCE

∴△BCG≌△DCESAS),

BG=DE,∠CBG=CDE

又∵∠BPC=DPO,∠CBG+BPC=90°,

∴∠CDE+DPO=90°,

∴∠DOP=90°,

BGDE

BG=DEBGDE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2-x-m+1)=0有两个不相等的实数根

1)求m的取值范围;

2)若m为符合条件的最小整数,求此方程的根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠AOB60°,在∠AOB的平分线OM上有一点C,∠DCE120°,当∠DCE的顶点与点C重合,它的两条边分别与直线OAOB相交于点DE

1)当∠DCE绕点C旋转到CDOA垂直时(如图1),请猜想OE+ODOC的数量关系,并说明理由;

2)由(图1)的位置将∠DCE绕点C逆时针旋转θ角(0θ90°),线段ODOEOC之间又有怎样的数量关系?请写出你的猜想,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂设计了一款成本为20元件的工艺品投放市场进行试销,经过调查,得到如下数据:

销售单价x(元件)

30

40

50

60

每天销售量y(件)

500

400

300

200

1)研究发现,每天销售量y与单价x满足一次函数关系,求出yx的关系式;

2)当地物价部门规定,该工艺品销售单价最高不能超过50元件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是“用三角板画圆的切线”的画图过程

如图1,已知圆上一点A,画过A点的圆的切线.

画法:(1)如图2,将三角板的直角顶点放在圆上任一点C(与点A不重合)处,使其一直角边经过点A,另一条直角边与圆交于B点,连接AB;

(2)如图3,将三角板的直角顶点与点A重合,使一条直角边经过点B,画出另一条直角边所在的直线AD.

所以直线AD就是过点A的圆的切线.

请回答:该画图的依据是_______________________________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在圆内接四边形中,,则四边形的面积为(

A.1B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,轴,点都在反比例函数上,点在反比例函数上,则______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线的图象与x轴交于B两点,与y轴交于点,对称轴x轴交于点H.

1)求抛物线的函数表达式

2)直线y轴交于点E,与抛物线交于点P,Q(点Py轴左侧,点Q y轴右侧),连接CPCQ,若的面积为,求点PQ的坐标.

3)在(2)的条件下,连接ACPQG,在对称轴上是否存在一点K,连接GK,将线段GK绕点G逆时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标不存在,请说明理由.

查看答案和解析>>

同步练习册答案