【题目】某商场要经营一种新上市的文具,进价为元件.试营销阶段发现:当销售单价是元时,每天的销售量为件;销售单价每上涨元,每天的销售量就减少件.
(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式.
(2)当销售单价定为多少元时,该文具每天的销售利润最大?最大利润为多少元?
(3)商场的营销部结合上述情况,提出了,两种营销方案:
方案:该文具的销售单价高于进价,但不超过元;
方案:每天销售量不少于件,且每件文具的利润至少为元.
请比较哪种方案的最大利润更高,并说明理由.
【答案】(1);(2)当销售单价定为元时,该文具每天的销售利润最大,最大利润为元;(3)方案的最大利润更高.理由见解析.
【解析】
(1)根据利润=(销售单价-进价)×销售量,列出函数关系式即可;
(2)根据(1)式列出的函数关系式,运用配方法求最大值;
(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.
解:(1)由题意得:销售量,
则
.
(2).
,
函数图象开口向下,有最大值,
当时,.
答:当销售单价定为元时,该文具每天的销售利润最大,最大利润为元.
(3)方案的最大利润更高.理由如下:
在方案中:,
利润,其图象的对称轴为直线,且开口向下,
当时,有最大值,
此时;
在方案中:
解得:,
利润,其图象的对称轴为直线,且开口向下,
当时,有最大值,
此时,
,
方案的最大利润更高.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,菱形OABC的顶点A的坐标为(5,0),顶点B、C都在第一象限,对角线AC、BO交于点D,双曲线y=(x>0)经过点D,且ACBO40,则k的值为( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校组织数学兴趣探究活动,爱思考的小实同学在探究两条直线的位置关系查阅资料时发现,两条中线互相垂直的三角形称为“中垂三角形”.如图1、图2、图3中,、是的中线,于点,像这样的三角形均称为“中垂三角形”.
(特例探究)
(1)如图1,当,时,_____,______;
如图2,当,时,_____,______;
(归纳证明)
(2)请你观察(1)中的计算结果,猜想、、三者之间的关系,用等式表示出来,并利用图3证明你的结论;
(拓展证明)
(3)如图4,在中,,,、、分别是边、的中点,连结并延长至,使得,连结,当于点时,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,从点A看一山坡上的电线杆PQ,观测点P的仰角是45°,向前走6m到达B点,测得顶端点P和杆底端点Q的仰角分别是60°和30°,则该电线杆PQ的高度( )
A. 6+2 B. 6+ C. 10﹣ D. 8+
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线的顶点为点,与轴的负半轴交于点,直线交抛物线W于另一点,点的坐标为.
(1)求直线的解析式;
(2)过点作轴,交轴于点,若平分,求抛物线W的解析式;
(3)若,将抛物线W向下平移个单位得到抛物线,如图2,记抛物线的顶点为,与轴负半轴的交点为,与射线的交点为.问:在平移的过程中,是否恒为定值?若是,请求出的值;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从甲地到乙地,先是一段上坡路,然后是一段平路,小明骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小明骑车在上坡、平路、下坡时分别保持匀速前进,已知小明骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km,设小明出发xh后,到达离乙地ykm的地方,图中的折线ABCDEF表示y与x之间的函数关系.
(1)小明骑车在平路上的速度为 km/h,他在乙地休息了 h.
(2)分别求线段AB、EF所对应的函数关系式.
(3)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是 .(写出所有正确结论的序号)
①b>0
②a﹣b+c<0
③阴影部分的面积为4
④若c=﹣1,则b2=4a.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com