【题目】从甲地到乙地,先是一段上坡路,然后是一段平路,小明骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小明骑车在上坡、平路、下坡时分别保持匀速前进,已知小明骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km,设小明出发xh后,到达离乙地ykm的地方,图中的折线ABCDEF表示y与x之间的函数关系.
(1)小明骑车在平路上的速度为 km/h,他在乙地休息了 h.
(2)分别求线段AB、EF所对应的函数关系式.
(3)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程.
【答案】(1)15;0.1
(2)y=20x﹣13.5(0.9≤x≤1)
(3)丙地与甲地之间的路程为1千米
【解析】
(1)分别计算出小明骑车上坡的速度,小明平路上的速度,小明下坡的速度,小明平路上所用的时间,小明下坡所用的时间为,即可解答.
(2)根据上坡的速度为10km/h,下坡的速度为20km/h,所以线段AB所对应的函数关系式为:y=6.5-10x,线段EF所对应的函数关系式为y=4.5+20(x-0.9),即可解答.
(3)设小明出发a小时第一次经过丙地,根据题意得到6.5-10a=20(a+0.85)-13.5,求出a的值,即可解答.
(1)小明骑车上坡的速度为:(6.5﹣4.5)÷0.2=10(km/h),
小明平路上的速度为:10+5=15(km/h),
小明下坡的速度为:15+5=20(km/h),
小明平路上所用的时间为:2(4.5÷15)=0.6h,
小明下坡所用的时间为:(6.5﹣4.5)÷20=0.1h
所以小明在乙地休息了:1﹣0.1﹣0.6﹣0.2=0.1(h).
故答案为:15,0.1;
(2)由题意可知:上坡的速度为10km/h,下坡的速度为20km/h,
所以线段AB所对应的函数关系式为:y=6.5﹣10x,
即y=﹣10x+6.5(0≤x≤0.2).
线段EF所对应的函数关系式为y=4.5+20(x﹣0.9).
即y=20x﹣13.5(0.9≤x≤1).
(3)由题意可知:小明第一次经过丙地在AB段,第二次经过丙地在EF段,
设小明出发a小时第一次经过丙地,
则小明出发后(a+0.85)小时第二次经过丙地,
6.5﹣10a=20(a+0.85)﹣13.5
解得:a=.
=1(千米).
答:丙地与甲地之间的路程为1千米.
科目:初中数学 来源: 题型:
【题目】如图,直线与双曲线交于C、D两点,与x轴交于点A.
(1)求n的取值范围和点A的坐标;
(2)过点C作CB⊥y轴,垂足为B,若S△ABC=4,求双曲线的解析式;
(3)在(1)、(2)的条件下,若AB=,求点C和点D的坐标并根据图象直接写出反比例函数的值小于一次函数的值时,自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题提出:
(1)如图①在中,是边的高,点是上任意一点,若则的最小值为_ ;
(2)如图②,在等腰中,是的垂直平分线,分别交于点,,求的周长;
问题解决:
(3)如图③,某公园管理员拟在园内规划一个区域种植花卉,且为方便游客游览,欲在各顶点之间规划道路和,满足点到的距离为.为了节约成本,要使得之和最短,试求的最小值(路宽忽略不计).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=,∠B=30°,D是BC上一点,连接AD,把△ABD沿直线AD折叠,点B落在B′处,连接B'C,若△AB'C是直角三角形,则BD的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣2x+c交x轴于点A(3,0),交y轴于点B,抛物线y=﹣x2+bx+c经过点A,B.
(1)求抛物线的解析式;
(2)点M(m,0)是线段OA上一动点(点M不与点O,A重合),过点M作y轴的平行线,交直线AB于点P,交抛物线于点N,若NP=AP,求m的值;
(3)若抛物线上存在点Q,使∠QBA=45°,请直接写出相应的点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】家住重庆两相邻小区的小明和小华在一次数学课后,进行了一次数学实践活动.如图,在同一水平面从左往右依次是小明家所在的居民楼、小华家所在的小洋房、背靠小华家的一座小山,实践内容为测量小山的高度,家住顶楼的小明在窗户A处测得小山山顶的一棵大树顶端E的俯角为10°,小华在自家楼下C处测得小明家窗户A处的仰角为37°,且测得坡面CD的坡度i=1:2,已知两家水平距离BC=120米,大树高度DE=3米,则小山山顶D到水平面BF的垂直高度约为( )(精确到0.1米,参考数据sin37°≈,tan37°≈,sin10°≈,tan10°≈)
A.55.0米B.50.3米C.48.1 米D.57.3米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在函数的学习中,我们经历了“确定函数表法式﹣画函数图象﹣利用函数图象研究函数性质﹣利用图象解决问题”的学习过程.在画函数图象时,我们常常通过描点或平移或翻折的方法画函数图象.小明根据学到的函数知识探究函数y1=的图象与性质并利用图象解决问题.小明列出了如表y1与x的几组对应的值:
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | … |
y1 | … | 4 | 2 | m | 2 | 4 | 2 | n | … |
(1)根据表格中x、y1的对应关系可得m=______,n=______;
(2)在平面直角坐标系中,描出表格中各点,两出该函数图象;根据函数图象,写出该函数的一条性质______.
(3)当函数y1的图象与直线y2=mx+1有三个交点时,直接写出m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.
(1)开通隧道前,汽车从A地到B地大约要走多少千米?
(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面上有且只有4个点,这4个点中有一个独特的性质:连结每两点可得到6条线段,这6条线段有且只有两种长度.我们把这四个点称作准等距点.例如正方形ABCD的四个顶点(如图1),有AB=BC=CD=DA,AC=BD.其实满足这样性质的图形有很多,如图2中A、B、C、O四个点,满足AB=BC=CA,OA=OB=OC;如图3中A、B、C、O四个点,满足OA=OB=OC=BC,AB=AC.
(1)如图,若等腰梯形ABCD的四个顶点是准等距点,且AD∥BC.
①写出相等的线段(不再添加字母);
②求∠BCD的度数.
(2)请再画出一个四边形,使它的四个顶点为准等距点,并写出相等的线段.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com