【题目】如图,直线y=﹣2x+c交x轴于点A(3,0),交y轴于点B,抛物线y=﹣x2+bx+c经过点A,B.
(1)求抛物线的解析式;
(2)点M(m,0)是线段OA上一动点(点M不与点O,A重合),过点M作y轴的平行线,交直线AB于点P,交抛物线于点N,若NP=AP,求m的值;
(3)若抛物线上存在点Q,使∠QBA=45°,请直接写出相应的点Q的坐标.
【答案】(1)y=﹣x2+x+6;(2)m=;(3)点Q的坐标为(,)或(﹣2,0).
【解析】
(1)将点A、B代入函数解析式,可求得b、c的值;
(2)利用△APM∽△ABO,可取得AP的值,然后再根据NP=AP,可求出m的值;
(3)存在2种情况,一种是点Q在AB的上方,另一种是点Q在AB的下方,分别利用几何性质计算可求得.
(1)∵y=﹣2x+c与x轴交于点A(3,0),与y轴交于点B,
∴﹣2×3+c=0,解得c=6,
∴B(0,6),
∵抛物线y=﹣x2+bx+c经过点A,B,
∴,解得,
∴抛物线解析式为y=﹣x2+x+6.
(2)由点M(m,0),得点P(m,﹣2m+6),点N(m,﹣m2+m+6),
∴NP=﹣m2+3m.
在Rt△OAB中,AB==3,
∵MP∥y轴,
∴△APM∽△ABO,
∴,即,
∴AP=(3﹣m),
∵NP=AP,
∴﹣m2+3m=×(3﹣m),解得:m=或3(舍去3),
∴m=.
(3)点Q的坐标为(,或(﹣2,0).
①当点Q在AB上方时,
设点Q的横坐标为n,如图,分别作QC⊥AB,QD⊥x轴,交AB于点E.
则点E(n,﹣2n+6),点Q(n,﹣n2+n+6),
则QE=﹣n2+n+6﹣(﹣2n+6)=﹣n2+3n,
∵∠CQE=90°﹣∠QEC=90°﹣∠AED=∠EAD,
∴Rt△QEC∽Rt△ABO,
,
则QC=,CE=,
∵∠QBA=45°,
∴BC=QC=,
∵ED∥OB,
∴,即,解得:BE=n,
而BE=BC+CE,
∴+=n,解得n=,
∴点Q的坐标为(,);
②当点Q在AB下方时,
同理可求,另一点Q的坐标为(﹣2,0),
故点Q的坐标为(,)或(﹣2,0).
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;④0<CE≤6.4.其中正确的结论是______________.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2020年3月24日,工信部发布《关于推动加快发展的通知》,全力推进网络建设、应用推广、技术发展和安全保障.工信部提出,要培育新型消费模式,加快用户向迁移,推动“医疗健康”创新发展,实施“工业互联网”512工程,促进“车联网”协同发展,构建应用生态系统.现“网络”已成为一个热门词汇,某校为了解九年级学生对“网络”的了解程度,对九年级学生行了一次测试(一共10道题答对1道得1分,满分10分),测试结束后随机抽取了部分学生的成绩整理分析,绘制出如图所示的两幅不完整的统计图,请根据图中信息解答下列问题:
(1)请补全条形统计图,扇形统计图中 __;
(2)所调查学生成绩的众数是_ ____分,平均数是_ 分;
(3)若该校九年级学生有人,请估计得分不少于分的有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年是脱贫攻坚最后一年,某镇拟修一条连通贫困山区村的公路,现有甲、乙两个工程队.若甲、乙合作,36天可以完成,需用600万元;若甲单独做20天后,剩下的由乙做,还需40天才能完成,这样所需550万元.
(1)求甲、乙两队单独完成此项工程各需多少天?
(2)求甲、乙两队单独完成此项工程各需多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,C是半圆O上一点(不与点A、B重合),D是的中点,DE⊥AB于点E,过点C作半圆O的切线,交ED的延长线于点F.
(1)求证:∠FCD=∠ADE;
(2)填空:
①当∠FCD的度数为 时,四边形OADC是菱形;
②若AB=2,当CF∥AB时,DF的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从甲地到乙地,先是一段上坡路,然后是一段平路,小明骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小明骑车在上坡、平路、下坡时分别保持匀速前进,已知小明骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km,设小明出发xh后,到达离乙地ykm的地方,图中的折线ABCDEF表示y与x之间的函数关系.
(1)小明骑车在平路上的速度为 km/h,他在乙地休息了 h.
(2)分别求线段AB、EF所对应的函数关系式.
(3)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC=4,∠C=90°,D是BC边上一点,且CD=3BD,连接AD,把△ACD沿AD翻折,得到△ADC',DC′与AB交于点E,连接BC′,则△BDC'的面积为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.
(1)抛物线及直线AC的函数关系式;
(2)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;
(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数中函数y与自变量x之间部分对应值如下表所示,点在函数图象上
x | … | 0 | 1 | 2 | 3 | … |
y | … | m | n | 3 | n | … |
则表格中的m=______;当时,和的大小关系为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com