精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD中,∠ABC 60,∠ADC 120AB BCAD DC 2,则四边形ABCD的面积是__________

【答案】

【解析】

由题意正确作出辅助线并根据等边三角形判定与性质和全等三角形的判定和性质以及勾股定理进行综合分析求解.

解:如图,延长CDE,使DE=DA.连接AC

∵∠ADC=120°,

∴∠ADE=60°,

AD=DE

∴△EAD是等边三角形,

AE=AD,∠DAE=60°,

AB=AC,∠ABD=60°,

∵∠BAD=60°+CAD,∠EAC=60°+CAD

∴∠BAD=CAE

∴△BAD≌△CAESAS),

AD+CD=DE+CD=CE=BD=2

∴∠ADB=E=60°,

∴∠BDC=120°-60°=60°,

过点BBFADF点,过B点作BGDC,交DC延长线于G点,

RtBFD中,DF=BD=1,由勾股定理可得BF=

同理可得BG=

四边形ABCD面积=ABD面积+BCD面积= ADBF+CDBG=AD+CD

AD DC 2

∴四边形ABCD面积==

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10/千克,售价不低于15/千克,且不超过40/每千克,根据销售情况,发现该芒果在一天内的销售量(千克)与该天的售价(元/千克)之间的数量满足如下表所示的一次函数关系.

销售量(千克)

32.5

35

35.5

38

售价(元/千克)

27.5

25

24.5

22

1)某天这种芒果售价为28/千克.求当天该芒果的销售量

2)设某天销售这种芒果获利元,写出与售价之间的函数关系式.如果水果店该天获利400元,那么这天芒果的售价为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB两个顶点在x轴上方,点C的坐标是(10),以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,得到△A'B'C',设点B的对应点B'的横坐标为2,则点B的横坐标为(  )

A.1B.C.2D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠EDF的顶点D在△ABC的边AB所在直线上(不与AB重合)DEAC所在直线于点MDFBC所在直线于点N,设AM=xBN=y,记△ADM的面积为S1,△BND的面积为S2

1)如图(1),当△ABC是等边三角形,AB=6,∠EDF=A,且DEBCAD=2时,S1S2=    

2)在(1)的条件下,将点D沿AB平移,使AD=4,再将∠EDF绕点D旋转如图(2)所示位置,

①求yx的函数关系式;②求S1S2的值;

3)当△ABC是等腰三角形时,设∠B=A=EDF,如图(3),当点DBA的延长线上运动时,设的AD=aBD=b,直接写出S1S2的关系式(用含abα的三角函数表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,∠CAB的角平分线AD交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.

(1)求证:DE是⊙O的切线;

(2)若∠CAB=60°,DE=3,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,ABAC,∠BAC120°,点DE分别在边ABAC上,ADAE,连接DC,点MPN分别为DEDCBC的中点.

1)观察猜想

1中,线段PMPN的数量关系是   ,∠MPN的度数是   

2)探究证明

把△ADE绕点A逆时针方向旋转到图2的位置,连接MNBDCE,判断△PMN的形状,并说明理由;

3)拓展延伸

把△ADE绕点A在平面内自由旋转,若AD4AB8,请直接写出△PMN面积的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着经济的快速发展,环境问题越来越受到人们的关注.某校学生会为了了解垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为非常了解”“了解”“了解较少”“不了解四类,并将调查结果绘制成下面两幅统计图.

1)求:本次被调查的学生有多少名?补全条形统计图.

2)估计该校1200名学生中非常了解了解的人数和是多少.

3)被调查的非常了解的学生中有2名男生,其余为女生,从中随机抽取2人在全校做垃圾分类知识交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系 XOY中,对于任意两点 (,) (,)非常距离,给出如下定义: ,则点 与点 非常距离 ;若 ,则点 与点非常距离 .

例如:点 (1,2),点 (3,5),因为 ,所以点 与点 非常距离 ,也就是图1中线段 Q与线段 Q长度的较大值(点 Q为垂直于 y轴的直线 Q与垂直于 x轴的直线 Q的交点)。

(1)已知点 A(-,0), B y轴上的一个动点,①若点 A与点 B非常距离2,写出一个满足条件的点 B的坐标;②直接写出点 A与点 B非常距离的最小值;

(2)已知 C是直线 上的一个动点,①如图2,点 D的坐标是(0,1),求点 C与点 D非常距离的最小值及相应的点 C的坐标; ②如图3, E是以原点 O为圆心,1为半径的圆上的一个动点,求点 C与点 E非常距离的最小值及相应的点 E和点 C的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形 ABCD 中,点 EF 分别在 BCCD 边上,且 CE3CF4.AEF 是等边三角形,则 AB 的长为___.

查看答案和解析>>

同步练习册答案