【题目】已知∠EDF的顶点D在△ABC的边AB所在直线上(不与A,B重合),DE交AC所在直线于点M,DF交BC所在直线于点N,设AM=x,BN=y,记△ADM的面积为S1,△BND的面积为S2.
(1)如图(1),当△ABC是等边三角形,AB=6,∠EDF=∠A,且DE∥BC,AD=2时,S1S2= ;
(2)在(1)的条件下,将点D沿AB平移,使AD=4,再将∠EDF绕点D旋转如图(2)所示位置,
①求y与x的函数关系式;②求S1S2的值;
(3)当△ABC是等腰三角形时,设∠B=∠A=∠EDF=α,如图(3),当点D在BA的延长线上运动时,设的AD=a,BD=b,直接写出S1S2的关系式(用含a、b和α的三角函数表示)
【答案】(1)12;(2)①;②12;(3)S1S2a2b2sin2α.
【解析】
(1)首先证明△ADM,△BDN都是等边三角形,可得S1= ,由此即可解决问题.
(2)①如图2中,首先证明△AMD∽△BDN,可得,推出,推出xy=8.②由S1=ADAMsin60°=x,S2=DBBNsin60°= y,可得S1S2=xy=xy=12.
(3)如图3中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,由S1=ADAMsinα=axsinα,S2=DBBNsinα=bysinα,可得S1S2=(ab)2sin2α.
(1)如图1中,
∵△ABC是等边三角形,
∴AB=CB=AC=6,∠A=∠B=60°.
∵DE∥BC,∠EDF=60°,
∴∠BND=∠EDF=60°,
∴∠BDN=∠ADM=60°,
∴△ADM,△BDN都是等边三角形,
∴S122,S242=4,
∴S1S2=12.
故答案为:12.
(2)如图2中,
①∵AM=x,BN=y,∠MDB=∠MDN+∠NDB=∠A+∠AMD,∠MDN=∠A,∴∠AMD=∠NDB.
∵∠A=∠B,
∴△AMD∽△BDN,
∴,
∴,
∴xy=8,
②∵S1ADAMsin60°x,S2DBBNsin60°y,
∴S1S2xyxy=12.
(3)如图3中,
∵AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab.
∵S1ADAMsinαaxsinα,S2DBBNsinαbysinα,
∴S1S2(ab)2sin2α.
科目:初中数学 来源: 题型:
【题目】甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.
(1)求从袋中随机摸出一球,标号是1的概率;
(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线,通过画图发现,无论b取何值,抛物线总会经过两个定点;
(1)直接写出这两个定点的坐标________ ,_________;
(2)若将此抛物线向右平移单位,再向上平移(b>0)个单位,平移后的抛物线顶点都在某个函数的图象上,求这个新函数的解析式(不必写自变量取值范围);
(3)若抛物线与直线y=x–3有两个交点A与B,且,求b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=45°,∠ACB=60°,BC=2+2,D是BC边上异于点B,C的一动点,将三角形ABD沿AB翻折得到△ABD1,将△ACD沿AC翻折得到△ACD2,连接D1D2,则四边形D1BCD2的面积的最大值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形ABC1D1边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图),以比类推……若A1C1=2,且点A、D2,D3,……Dn在同一直线上,则正方形An﹣1Cn﹣1CnDn的边长是____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形OABC中,OA=3,AB=4,双曲线(k>0)与矩形两边AB、BC分别交于D、E,且BD=2AD
(1)求k的值和点E的坐标;
(2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD的外侧, 作两个等腰三角形ADE和DCF,
(1) 若EA=ED=FD=FC,请判断BE和AF的关系?并给予证明.
(2)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,请用备用图画出图形,直接写出BE和AF的关系,不用证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中,m= .
(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)观察函数图象,写出两条函数的性质.
(4)进一步探究函数图象发现:
①函数图象与x轴有 个交点,所以对应的方程x2﹣2|x|=0有 个实数根;
②方程x2﹣2|x|=2有 个实数根.
③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com