【题目】某班“数学兴趣小组”对函数y=﹣x2+2|x|+1的图象和性质进行了探究,探究过程如下,请补充完整.
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | ﹣2 | ﹣ | m | 2 | 1 | 2 | 1 | ﹣ | ﹣2 | … |
其中,m= .
(2)根据上表数据,在如图所示的平面直角坐标系中描点,画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)观察函数图象,写出两条函数的性质.
(4)进一步探究函数图象发现:
①方程﹣x2+2|x|+1=0有 个实数根;
②关于x的方程﹣x2+2|x|+1=a有4个实数根时,a的取值范围是 .
【答案】(1)1;(2)详见解析;(3)①函数的最大值是2,没有最小值;②当x>1时,y随x的增大而减小;(4)①2;②1<a<2.
【解析】
(1)根据对称可得m=1;
(2)画出图形;
(3)①写函数的最大值和最小值问题;
②确定一个范围写增减性问题;
(4)①当y=0时,与x轴的交点有两个,则有2个实数根;
②当y=a时,有4个实根,就是有4个交点,确定其a的值即可.
解:(1)由表格可知:图象的对称轴是y轴,
∴m=1,
故答案为:1;
(2)如图所示;
(3)性质:①函数的最大值是2,没有最小值;
②当x>1时,y随x的增大而减小;
(4)①由图象得:抛物线与x轴有两个交点
∴方程﹣x2+2|x|+1=0有2个实数根;
故答案为:2;
②由图象可知:﹣x2+2|x|+1=a有4个实数根时,
即y=a时,与图象有4个交点,
所以a的取值范围是:1<a<2.
故答案为:1<a<2.
科目:初中数学 来源: 题型:
【题目】如图,在10×10正方形网格中,每个小正方形的边长均为1个单位.将△ABC向下平移4个单位,得到△A′B′C′,再把△A′B′C′绕点C'顺时针旋转90°,得到△A″B″C′,请你画出△A′B′C′和△A″B″C′,求出 的长?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标是(1,n),与y轴的交点在(0,3)和(0,6)之间(包含端点),则下列结论错误的是( )
A.3a+b<0B.﹣2≤a≤﹣lC.abc>0D.9a+3b+2c>0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形ABCD为正方形,点A的坐标为(0,3),点B的坐标为(0,﹣4),反比例﹣函数y=(k≠0)的图象经过点C.
(1)求反比例函数的解析式;
(2)点P是反比例函数在第二象限的图象上的一点,若△PBC的面积等于正方形ABCD的面积,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,扇形AOB中,∠AOB=120°,OA=2,若以A为圆心,OA长为半径画弧交弧AB于点C,过点C作CD⊥OA,垂足为D,则图中阴影部分的面积为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(3分)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=-x+1与x轴.y轴分别交于A.B两点,抛物线y=-x2+bx+c经过点B,且与直线AB的另一交点为C(4,n).
(1)求n的值及该抛物线所对应的函数关系式;
(2)设抛物线上的一个动点P的横坐标为t(0<t<4),过点P作PD⊥AB于点D,作PE∥y轴交直线AB于点E,
①y轴上存在点Q,使得四边形QEPB是矩形,请求出点Q的坐标;
②求线段PD的长的最大值;
③当t为何值时,点D为BE的中点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com