精英家教网 > 初中数学 > 题目详情
10.把多项式x2-1-2x+x3按x的升幂排列得:-1-2x+x2+x3

分析 先分清多项式的各项,然后按多项式升幂排列的定义排列.

解答 解:把多项式x2-1-2x+x3按x的升幂排列为:-1-2x+x2+x3
故答案为:-1-2x+x2+x3

点评 此题主要考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.已知抛物线y=x2+bx+c过点(0,1)和(1,0),则b=-2,c=1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.因式分解:x2y-3xy=xy(x-3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,抛物线y=-x2+bx+c与x轴相交于A、B两点,与y轴相交于点C(0,3),点B坐标是(3,0),设抛物线的顶点为点D.
(1)求此抛物线的解析式与对称轴;
(2)作直线BC,与抛物线的对称轴交于点E,点P为直线BC上方的二次函数上一个动点(且点P与点B、C不重合),过点P作PF∥DE交直线BC于点F,设点P的横坐标为m;
①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PDEF为平行四边形?
②设△PBC的面积为S,求S与m的函数关系式.S是否存在最大值?若存在,求出最大值并求出此时P点坐标,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.为了求1+2+22+23+…+22010的值,可令S=1+2+22+23+…+22010,则2S=2+22+23+24+…+22011,因此2S-S=22011-1,所以1+2+22+23+…+22010=22011-1,仿照以上推理,计算1+3+32+33+…+3333的值可得$\frac{{3}^{334}-1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.由甲地到乙地的一条铁路全程为s千米,火车全程运行时间为a小时;由甲地到乙地的公路全程为这条铁路的m倍,汽车全程运行时间为b小时,那么火车速度是汽车速度的$\frac{b}{am}$倍.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.下面是小彤同学做家庭作业的部分答题:
①0.3、0.4、0.5是一组勾股数;
②若点Q(m-1,m)在y轴上,则点Q的坐标为(0,1);
③如果一个正方体的体积为125cm3,则它的棱长为5cm;
④已知函数y=(m-1)x+2是一次函数,且y的值随x值的增大而减小,则m>1.
其中正确的是②③(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA,OB,OC抽象为线段,有OA=OB=OC,且∠AOB=120°,折线NG-GH-HE-EF表示楼梯,CH,EF是水平线,NG,HE是铅垂线,半径相等的小轮子⊙A,⊙B与楼梯两边相切,且AO∥GH.
(1)如图①,若点H在线段OB上,则$\frac{BH}{OH}$的值是$\sqrt{3}$.
(2)如果一级楼梯的高度$HE=({8\sqrt{3}+2})cm$,点H到线段OB的距离d满足条件d≤3cm,那么小轮子半径r的取值范围是(11-3$\sqrt{3}$)cm≤r≤8cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图1,△ACB为等腰三角形,∠ABC=90°,点P在线段BC上(不与B,C重合),以AP为腰长作等腰直角△PAQ,QE⊥AB于E.

(1)求证:△PAB≌△AQE;
(2)连接CQ交AB于M,若PC=2PB,求$\frac{PC}{MB}$的值;
(3)如图2,过Q作QF⊥AQ交AB的延长线于点F,过P点作DP⊥AP交AC于D,连接DF,当点P在线段BC上运动时(不与B,C重合),式子$\frac{QF-DP}{DF}$的值会变化吗?若不变,求出该值;若变化,请说明理由.

查看答案和解析>>

同步练习册答案