【题目】如图,所有小正方形的边长都为1个单位,A、B、C均在格点上.
(1)过点C画线段AB的平行线CD;
(2)过点A画线段BC的垂线,垂足为E;
(3)线段AE的长度是点 到直线 的距离;
(4)比较线段AE、AB、BC的大小关系(用“<”连接).
【答案】(1)画图见解析;(2)画图见解析,点E位置标注正确;(3)A,BC; (4)AE < BC < AB.
【解析】
(1)(2)根据网格的特点直接作出平行线和垂线即可.
(3)利用垂线段的定义解决即可.
(4)利用垂线段最短解决即可.
(1)根据小正方形网格图的特征,每个小正方形边长为1,画出AB的平行线,如图所示:
(2)如图,延长CB,过A点向CB做垂线,E为垂足;
(3)A,BC;
(4)线段AE的长度,小于线段AB的长度,理由是:直线外一点与直线上各点连接的所有线段中,垂线段最短;AE <AB;每个小正方形的边长是1,由上图可知,BC是由三个小正方形组成的矩形的对角线长,AE是由两个小正方形和1个小矩形组成的矩形的对角线长,AE<BC,同理能够得到BC<AB,综上所述:AE < BC < AB
科目:初中数学 来源: 题型:
【题目】已知平面内有A、B、C、D四点,请按下列要求作图.
(1)作射线AC,线段DC;
(2)作∠BAD的补角,并标上字母;
(3)用量角器量出∠BAC的度数,并求出它的余角的度数(精确到度);
(4)在图中求作一点P,使P点到A、B、C、D四点的距离和最短.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,二次函数y=﹣x2+bx+c的图线与坐标轴分别交于点A、B、C,其中点A(0,8),OB=OA.
(1)求二次函数的表达式;
(2)若OD=OB,点F为该二次函数在第二象限内图象上的动点,E为DF的中点,当△CEF的面积最大时,求出点E的坐标;
(3)将三角形CEF绕E旋转180°,C点落在M处,若M恰好在该抛物线上,求出此时△CEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目 (被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:
(1)求本次调查的学生人数;
(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;
(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程mx2-2x+1=0.
(1)若方程有两个实数根,求m的取值范围;
(2)若方程的两个实数根为x1,x2,且x1x2-x1-x2=,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个问题解决往往经历发现猜想——探索归纳——问题解决的过程,下面结合一道几何题来体验一下.
(发现猜想)(1)如图①,已知∠AOB=70°,∠AOD=100°,OC为∠BOD的角平分线,则∠AOC的度数为 ;.
(探索归纳)(2)如图①,∠AOB=m,∠AOD=n,OC为∠BOD的角平分线. 猜想∠AOC的度数(用含m、n的代数式表示),并说明理由.
(问题解决)(3)如图②,若∠AOB=20°,∠AOC=90°,∠AOD=120°.若射线OB绕点O以每秒20°逆时针旋转,射线OC绕点O以每秒10°顺时针旋转,射线OD绕点O每秒30°顺时针旋转,三条射线同时旋转,当一条射线与直线OA重合时,三条射线同时停止运动. 运动几秒时,其中一条射线是另外两条射线夹角的角平分线?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)方法回顾
在学习三角形中位线时,为了探索三角形中位线的性质,思路如下:
第一步添加辅助线:如图1,在△ABC中,延长DE (D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF;
第二步证明△ADE≌△CFE,再证四边形DBCF是平行四边形,从而得到DE∥BC,DE=BC.
(2)问题解决
如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.
(3)拓展研究
如图3,在四边形ABCD中,∠A=100°,∠D=110°,E为AD的中点,G、F分别为AB、CD边上的点,若AG=4,DF=,∠GEF=90°,求GF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l1∥l2∥l3∥l4,相邻两条平行线间的距离都是1,正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积为( )
A. B. C. 3 D. 5
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com