【题目】已知:如图,DE⊥AC,垂足为点E,∠AGF=∠ABC,∠BFG+∠BDE=180°,
求证:BF⊥AC.
请完成下面的证明的过程,并在括号内注明理由.
证明:∵∠AGF=∠ABC(已知)
∴FG∥ ( )
∴∠BFG=∠FBC( )
∵∠BFG+∠BDE=180°(已知)
∴∠FBC+∠BDE=180°( )
∴BF∥DE( )
∴∠BFA= (两直线平行,同位角相等)
∵DE⊥AC(已知)
∴∠DEA=90°( )
∴∠BFA=90°(等量代换)
∴BF⊥AC(垂直的定义)
【答案】BC,同位角相等,两直线平行,两直线平行,内错角相等,等量代换,同旁内角互补,两直线平行,∠DEA,垂直的定义.
【解析】
先根据得出,故可得出,由可得出,据此可得出结论.
解:∵∠AGF=∠ABC(已知)
∴FG∥BC(同位角相等,两直线平行)
∴∠BFG=∠FBC(两直线平行,内错角相等)
∵∠BFG+∠BDE=180°(已知)
∴∠FBC+∠BDE=180°(等量代换)
∴BF∥DE(同旁内角互补,两直线平行)
∴∠BFA=∠DEA(两直线平行,同位角相等)
∵DE⊥AC(已知)
∴∠DEA=90°(垂直的定义)
∴∠BFA=90°(等量代换)
∴BF⊥AC(垂直的定义).
故答案为:,同位角相等,两直线平行,两直线平行,内错角相等,等量代换,同旁内角互补,两直线平行,,垂直的定义.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC的三个顶点坐标分别为A(﹣1,﹣2),B(﹣1,﹣4),C(2,﹣3).
(1)将△ABC先向右平移4个单位,再向上平移6个单位,得到△A1B1C1,作出△A1B1C1,线段AC在平移过程中扫的面积为 ;
(2)作出△A1B1C1关于y轴对称的图形△A2B2C2,则坐标C2为 ;
(3)若△ABD与△ABC全等,则点D的坐标为 (点C与点D不重合)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
销售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售价x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.
(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,BC=3,D为AC延长线上一点,AC=3CD,过点D作DH∥AB,交BC的延长线于点H.
(1)求BD·cos∠HBD的值;
(2)若∠CBD=∠A,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AC=BC,∠ACB=90°,点 D,E分别在AB,BC上,且AD=BE,BD=AC,过E作EF⊥AB于F.
(1)求证:∠FED=∠CED;
(2)若 BF=,直接写出 CE的长为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(﹣3,0),点 B是 y轴正半轴上一动点,点C、D在 x正半轴上.
(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.
(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=DC?请求出点C的坐标;
(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,是某城市街道示意图,已知与均是等边三角形(即三条边都相等,三个角都相等的三角形),点为公交车停靠站,且点在同一条直线上.
(1)图中与全等吗?请说明理由;
(2)连接,写出与的大小关系;
(3)公交车甲从出发,按照的顺序到达站;公交车乙从出发,按照的顺序到达站.若甲,乙两车分别从两站同时出发,在各站停靠的时间相同,两车的平均速度也相同,则哪一辆公交车先到达指定站?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用同样规格的黑白两种颜色的正方形,按如图①的方式拼图,请根据图中的信息完成下列的问题
(1)在图②中用了___________块黑色正方形,在图③中用了_____________块黑色正方形;
(2)按如图的规律继续铺下去,那么第个图形要用____________块黑色正方形;
(3)如果有足够多的白色正方形,能不能恰好用完块黑色正方形,拼出具有以上规律的图形?如果可以请说明它是第几个图形;如果不能,说明你的理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com