【题目】如图,抛物线,经过点,,三点.
求抛物线的解析式及顶点M的坐标;
连接AC、MB,P为线段MB上的一个动点(不与点M、B重合),过点P作x轴的垂线PQ,若OQ=a,四边形ACPQ的面积为s,求a为何值时,面积s最大;
点N是抛物线上第四象限的一个定点,坐标为 ,过点C作直线轴,动点在直线l上,动点在x轴上,连接PM、PQ、NQ,当m为何值时,的和最小,并求出和的最小值.
【答案】(1);M(1,4)
(2)当,面积最大,最大为.
(3)
【解析】
(1)抛物线过,,可求得解析式;
(2)将用含的代数式表示,并配方成顶点式求出最大值;
(3)根据选址造桥模型,将顶点向下平移三个单位得,当 在同一条直线上时,取得最小值.
(1)∵抛物线经过点,,,
∴ 解得
∴=,顶点M的坐标为(1,4)
(2)连接AC、MB,P为线段MB上的一个动点(不与点M、B重合),过点P作x轴的垂线PQ.设P点的坐标为 ,如图所示.
∵P在直线MB上,,,设直线MB为
解得
直线MB的解析式为,P点坐标为
∵,,,
∴,,
∵
整理
∴即当,面积最大,最大为.
(3)将顶点向下平移三个单位得 ,连接 交轴于点,连接.如图所示,则.
∵,
∴轴,且
∴,四边形为平行四边形
∴,有图知三点共线时,取最小值.
设直线的解析式为,将点,N
求得直线的解析式为,
当时,,即,即,
此时过点作轴交延长线与点,
在中,,,
∴,
∴,即,
∴当时,的最小值为.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于E,OD⊥BC交⊙O于D,DE交BC于F,点P为CB延长线上的一点,延长PE交AC于G,PE=PF
(1)求证:直线PG为⊙O的切线;
(2)求证:GA=GE;
(3)判断OG与BE的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).
(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;
(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;
(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x,y轴分别交于点A,B,则△OAB为此函数的坐标三角形.
(1)求函数y=x+3的坐标三角形的三条边长;
(2)若函数y=x+b(b为常数)的坐标三角形周长为16,求此三角形面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,点在边上,,射线交于点,点从点出发,以每秒个单位长度的速度沿射线方向运动,过点作,交射线于点,以、为邻边作,设点的运动时间为.
(1)线段的长为 (用含的代数式表示)
(2)求点落在上时的值;
(3)设与的重叠部分图形的面积为(平方单位),当时,求与之间的函数关系式.
(4)当时,直接写出为等腰三角形时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系 xOy中,反比例函数 y x 0 的图象经过点 A2,3 ,直线y ax , y 与反比例函数 y x 0 分别交于点 B,C两点.
(1)直接写出 k 的值 ;
(2)由线段 OB,OC和函数 y x 0 在 B,C 之间的部分围成的区域(不含边界)为 W.
① 当 A点与 B点重合时,直接写出区域 W 内的整点个数 ;
② 若区域 W内恰有 8个整点,结合函数图象,直接写出 a的取值范围 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一个二次函数图象上部分点的横坐标与纵坐标的对应值如表所示:
… | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … | |
… | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | … |
(1)求这个二次函数的表达式;
(2)在给定的平面直角坐标系中画出这个二次函数的图象;
(3)当时,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在的直角三角形中,,是直角边所在直线上的一个动点,连接,将绕点逆时针旋转到,连接,.
(1)如图①,当点恰好在线段上时,请判断线段和的数量关系,并结合图①证明你的结论;
(2)当点不在直线上时,如图②、图③,其他条件不变,(1)中结论是否成立?若成立,请结合图②、图③选择一个给予证明;若不成立,请直接写出新的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com