【题目】某网店销售一种儿童玩具,每件进价20元,规定单件销售利润不低于10元,且不高于18元.试销售期间发现,当销售单价定为35元时,每天可售出250件,销售单价每上涨1元,每天销售量减少10件,该网店决定提价销售.设每天销售量为y件,销售单价为x元.
(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;
(2)当销售单价是多少元时,网店每天获利3840元?
(3)网店决定每销售1件玩具,就捐赠a元(0<a≤6)给希望工程,每天扣除捐赠后可获得最大利润为3300元,求a的值.
【答案】(1)y=﹣10x+600(30≤x≤38);(2)36元;(3)3.6
【解析】
(1)根据原销售件数减去减少的件数即为所求;
(2)根据销售利润等于单件利润乘以销售量即可求解;
(3)根据单件利润减去捐赠数为最后单件利润,再根据销售利润等于单件利润乘以销售量即可求解.
解:(1)由题意得,y=250﹣10(x﹣35)=﹣10x+600;
即y与x之间的函数关系式为:y=﹣10x+600(30≤x≤38);
(2)根据题意得,(﹣10x+600)(x﹣20)=3840,
解得:x1=36,x2=44,
∵30≤x≤38,
∴x=36,
答:当销售单价是36元时,网店每天获利3840元;
(3)设每天扣除捐赠后可获得利润为W,
根据题意得,W=(﹣10x+600)(x﹣20﹣a)=﹣10x2+(800+10a)x﹣600(20+a),
∵对称轴x=40+a,
∵30≤x≤38,∵0<a≤6
∴40<a+40≤43
∴x=40+a时,
每天扣除捐赠后可获得最大利润为3300元,
(﹣10(40+a)+600)(40+a﹣20﹣a)=3300
(200﹣5a)(20﹣a)=3300
整理得a2﹣80a+280=0
解得a1=40﹣2≈3.6,a2=40+2(舍去).
答:a的值为3.6.
科目:初中数学 来源: 题型:
【题目】已知,在矩形ABCD中,连接对角线AC,将△ABC绕点B顺时针旋转90°得到△EFG,并将它沿直线AB向左平移,直线EG与BC交于点H,连接AH,CG.
(1)如图①,当AB=BC,点F平移到线段BA上时,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想;
(2)如图②,当AB=BC,点F平移到线段BA的延长线上时,(1)中的结论是否成立,请说明理由;
(3)如图③,当AB=nBC(n≠1)时,对矩形ABCD进行如已知同样的变换操作,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°, AD是∠BAC的平分线,O是AB上一点, 以OA为半径的⊙O经过点D.
(1)求证:BC是⊙O切线;
(2)若BD=5,DC=3,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的二次函数y=x2+bx+b2在b≤x≤b+3范围内,函数值有最小值21,则b的值是( )
A. 或2B.或±2C.﹣4或D.1或﹣4或
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线C1:y=ax2+bx+b2向左平移1个单位长度,再向上平移4个单位长度得到抛物线C2:y=x2.
(1)直接写出抛物线C1的解析式;
(2)如图1,已知抛物线C1交x轴于点A、点B,点A在点B的左侧,点P(2,t)在抛物线C1上,CB⊥PB交抛物线于点C,求C点的坐标;
(3)已知点E、点M在抛物线C2上,EM∥x轴,点E在点M左侧,过点M的直线MD与抛物线C2只有一个公共点(MD与y轴不平行),直线DE与抛物线交于另一点N.若线段NE=DE,设点M、N的横坐标分别为m、n,求m和n的数量关系(用含m的式子表示n)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是直线y=3上的动点,连接PO并将PO绕P点旋转90°到PO′,当点O′刚好落在双曲线(x>0)上时,点P的横坐标所有可能值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在研究相似问题时,甲、乙同学的观点如下:
甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.
乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形相似.
对于两人的观点,下列说法正确的是( )
A.甲对,乙不对 B.甲不对,乙对 C.两人都对 D.两人都不对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的顶点都在方格线的交点(格点)上.
(1)将△ABC绕C点按逆时针方向旋转90°得到△A′B′C′,请在图中画出△A′B′C′.
(2)将△ABC向上平移1个单位,再向右平移5个单位得到△A″B″C″,请在图中画出△A″B″C″.
(3)若将△ABC绕原点O旋转180°,A的对应点A1的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
①二次函数的最大值为a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④当y>0时,﹣1<x<3,其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com