【题目】探索与证明:(1)如图1,直线m经过正三角形ABC的顶点A,在直线m上取两点 D,E,使得∠ADB=60°,∠AEC=60°.通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明;
(2)将(1)中的直线m绕点A逆时针方向旋转一个角度到如图2的位置,并使∠ADB=120°,∠AEC=120°.通过观察或测量,请直接写出线段BD,CE与DE之间满足的数量关系.
【答案】(1)BD+CE=DE,证明见解析;(2)BD+DE=CE
【解析】试题分析:(1)通过证明△DAB≌△ECA(AAS),得出AD=CE,BD=AE,进而证得BD+CE= DE:
(2)通过△DAB≌△ECA(AAS),得出AD=CE,BD=AE,从而证得CE-BD=DE.
解:(1)猜想:BD+CE=DE.
证明:由已知条件可知:
∠DAB+∠CAE=120°,∠ECA+∠CAE=120°,
∴∠DAB=∠ECA.
在△DAB和△ECA中,
,
∴△DAB≌△ECA(AAS).
∴AD=CE,BD=AE.
∴BD+CE=AE+AD=DE.
(2)猜想:CEBD=DE.
证明:由已知条件可知:
∠DAB+∠CAE=60°,∠ECA+∠CAE=60°,
∴∠DAB=∠ECA.
在△DAB和△ECA中,
,
∴△DAB≌△ECA(AAS).
∴AD=CE,BD=AE.
∴CEBD=ADAE=DE.
科目:初中数学 来源: 题型:
【题目】下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( )
A.50
B.64
C.68
D.72
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,这比打折前少花多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:
A型 | B型 | |
价格(万元/台) | 12 | 10 |
月污水处理能力(吨/月) | 200 | 160 |
经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.
(1)该企业有几种购买方案?
(2)哪种方案更省钱,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过点A(4,0),B(0,4),C(6,6).
(1)求抛物线的表达式;
(2)证明:四边形AOBC的两条对角线互相垂直;
(3)在四边形AOBC的内部能否截出面积最大的DEFG?(顶点D,E,F,G分别在线段AO,OB,BC,CA上,且不与四边形AOBC的顶点重合)若能,求出DEFG的最大面积,并求出此时点D的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1对应的函数表达式为y=2x-2,直线l1与x轴交于点D.直线l2:y=kx+b与x轴交于点A,且经过点B,直线l1,l2交于点C(m,2).
(1)求点D,点C的坐标;
(2)求直线l2对应的函数表达式;
(3)求△ADC的面积;
(4)利用函数图象写出关于x,y的二元一次方程组的解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知数轴上点对应的数为6,是数轴上点左边的一点,=10,动点从点出发,沿着数轴正方向向右匀速运动,若是的中点,是的中点,点在运动过程中,线段的长度是否发生变化?若有变化,说明理由;若没有变化,请求出的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com